Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.639
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
2.
Cell ; 175(5): 1336-1351.e17, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318148

RESUMO

As a critical step during innate response, the cytoplasmic ß subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.


Assuntos
Selectina E/metabolismo , Imunidade Inata , Receptores de Interferon/metabolismo , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Selectina E/deficiência , Selectina E/genética , Complexo de Golgi/metabolismo , Interferon gama/sangue , Interferon gama/metabolismo , Listeria/patogenicidade , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transporte Proteico , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Transdução de Sinais , Receptor de Interferon gama
3.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451235

RESUMO

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Assuntos
Canais Iônicos , Humanos , Animais , Canais Iônicos/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Organelas/fisiologia
4.
Mol Cell ; 81(6): 1147-1159.e4, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33548201

RESUMO

The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complexos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Domínios Proteicos , Relação Estrutura-Atividade
5.
Mol Cell ; 78(6): 1055-1069, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32559424

RESUMO

Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neoplasias/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo
6.
EMBO J ; 41(6): e110002, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35199384

RESUMO

The use of animals in neuroscience and biomedical research remains controversial. Policy is built around the "3R" principle of "Refining, Reducing and Replacing" animal experiments, and across the globe, different initiatives stimulate the use of animal-free methods. Based on an extensive literature screen to map the development and adoption of animal-free methods in Alzheimer's and Parkinson's disease research, we find that at least two in three examined studies rely on animals or on animal-derived models. Among the animal-free studies, the relative contribution of innovative models that may replace animal experiments is limited. We argue that the distinction between animal research and alternative models presents a false dichotomy, as the role and scientific value of both animal and animal-free approaches are intertwined. Calls to halt all animal experiments appear premature, as insufficient non-animal-based alternatives are available and their development lags behind. In light of this, we highlight the need for objective, unprejudiced monitoring, and more robust performance indicators of animal-free approaches.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Animais , Modelos Animais
7.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805640

RESUMO

The stem cell pools at the shoot apex and root tip give rise to all the above- and below-ground tissues of a plant. Previous studies in Arabidopsis identified a TSO1-MYB3R1 transcriptional module that controls the number and size of the stem cell pools at the shoot apex and root tip. As TSO1 and MYB3R1 are homologous to components of an animal cell cycle regulatory complex, DREAM, Arabidopsis mutants of TSO1 and MYB3R1 provide valuable tools for investigations into the link between cell cycle regulation and stem cell maintenance in plants. In this study, an Arabidopsis cyclin A gene, CYCA3;4, was identified as a member of the TSO1-MYB3R1 regulatory module and cyca3;4 mutations suppressed the tso1-1 mutant phenotype specifically in the shoot. The work reveals how the TSO1-MYB3R1 module is integrated with the cell cycle machinery to control cell division at the shoot meristem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Mutação , Fertilidade , Regulação da Expressão Gênica de Plantas , Brotos de Planta/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
9.
Semin Cancer Biol ; 106-107: 58-86, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197810

RESUMO

Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110ß, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.

10.
EMBO J ; 40(14): e105985, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34121209

RESUMO

Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Proteômica/métodos
11.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36789796

RESUMO

Jaw1 (also known as IRAG2), a tail-anchored protein with 39 carboxyl (C)-terminal amino acids, is oriented to the lumen of the endoplasmic reticulum and outer nuclear membrane. We previously reported that Jaw1, as a member of the KASH protein family, plays a role in maintaining nuclear shape via its C-terminal region. Furthermore, we recently reported that Jaw1 functions as an augmentative effector of Ca2+ release from the endoplasmic reticulum by interacting with the inositol 1,4,5-trisphosphate receptors (IP3Rs). Intriguingly, the C-terminal region is partially cleaved, meaning that Jaw1 exists in the cell in at least two forms - uncleaved and cleaved. However, the mechanism of the cleavage event and its physiological significance remain to be determined. In this study, we demonstrate that the C-terminal region of Jaw1 is cleaved after its insertion by the signal peptidase complex (SPC). Particularly, our results indicate that the SPC with the catalytic subunit SEC11A, but not SEC11C, specifically cleaves Jaw1. Furthermore, using a mutant with a defect in the cleavage event, we demonstrate that the cleavage event enhances the augmentative effect of Jaw1 on the Ca2+ release ability of IP3Rs.


Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Núcleo Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo
12.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953724

RESUMO

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Assuntos
Apoptose , Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Neoplasias Meníngeas , Meningioma , Animais , Humanos , Camundongos , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neurofibromina 2
13.
Brain ; 147(10): 3370-3378, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864492

RESUMO

Visual hallucinations can increase the burden of disease for both patients with Parkinson's disease and their caregivers. Multiple neurotransmitters have been implicated in the neuropathology of visual hallucinations, which provide targets for treatment and prevention. In this study, we assessed the association between cholinergic denervation and visual hallucinations in Parkinson's disease in vivo, using PET imaging of the cholinergic system. A total of 38 patients with Parkinson's disease participated in this study. A group of 10 healthy subjects, matched for age, sex and education, was included for comparison. None of the participants used cholinergic drugs. Thirteen patients who had experienced visual hallucinations in the past month (VH+) were compared with 20 patients who had never experienced visual hallucinations in their lives (VH-). Cholinergic system integrity was assessed with PET imaging using 18F-fluoroethoxybenzovesamicol as the tracer. We assessed the differences in tracer uptake between groups by cluster-based analysis and by analysis of predefined regions of interest consisting of the ventral visual stream, the dorsal attentional network, the ventral attentional network and the lateral geniculate nucleus and mediodorsal nucleus of the thalamus. The Parkinson's disease group (n = 38) showed an extensive pattern of decreased tracer uptake throughout the brain compared with the controls (n = 10). Within the Parkinson's disease group, the VH+ group (n = 13) showed a cluster of decreased tracer uptake compared with the VH- group (n = 20), which covered most of the left ventral visual stream and extended towards superior temporal areas. These results were mirrored in the regions of interest-based analysis, in which the VH+ group showed the strongest deficits in the left inferior temporal gyrus and the left superior temporal gyrus compared with the VH- group. Visual hallucinations in Parkinson's disease are associated with a marked cholinergic deficiency in the left ventral visual stream and the left superior temporal lobe, in addition to an extensive global cholinergic denervation in the general Parkinson's disease population.


Assuntos
Alucinações , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Doença de Parkinson/complicações , Alucinações/etiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Piperidinas
14.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351611

RESUMO

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional , Terapia Genética
15.
Cell Mol Life Sci ; 81(1): 343, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129011

RESUMO

The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.


Assuntos
Composição Corporal , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Homeodomínio , Homeostase , Hipotálamo , Camundongos Knockout , Animais , Masculino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
16.
Cell Mol Life Sci ; 81(1): 376, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212707

RESUMO

In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.


Assuntos
Autofagia , Células Endoteliais da Veia Umbilical Humana , Imunoglobulinas Intravenosas , Receptores de IgG , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Autofagia/efeitos dos fármacos , Receptores de IgG/metabolismo , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Apoptose/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Coroa de Proteína/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Semin Immunol ; 54: 101515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34772606

RESUMO

A considerable amount of continuous proliferation and differentiation is required to produce daily a billion new neutrophils in an adult human. Of the few cytokines and factors known to control neutrophil production, G-CSF is the guardian of granulopoiesis. G-CSF/CSF3R signaling involves the recruitment of non-receptor protein tyrosine kinases and their dependent signaling pathways of serine/threonine kinases, tyrosine phosphatases, and lipid second messengers. These pathways converge to activate the families of STAT and C/EBP transcription factors. CSF3R mutations are associated with human disorders of neutrophil production, including severe congenital neutropenia, neutrophilia, and myeloid malignancies. More than three decades after their identification, cloning, and characterization of G-CSF and G-CSF receptor, fundamental questions remain about their physiology.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Neutropenia , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese , Humanos , Neutropenia/congênito , Neutropenia/genética , Neutropenia/patologia , Neutrófilos/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(15): e2118816119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394866

RESUMO

Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)­induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Infecções , Lisofosfolipídeos , Neoplasias , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/imunologia , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Infecções/imunologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neoplasias/imunologia , Receptores de Ácidos Lisofosfatídicos/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022238

RESUMO

Stromal interaction molecules, STIM1 and STIM2, sense decreases in the endoplasmic reticulum (ER) [Ca2+] ([Ca2+]ER) and cluster in ER-plasma membrane (ER-PM) junctions where they recruit and activate Orai1. While STIM1 responds when [Ca2+]ER is relatively low, STIM2 displays constitutive clustering in the junctions and is suggested to regulate basal Ca2+ entry. The cellular cues that determine STIM2 clustering under basal conditions is not known. By using gene editing to fluorescently tag endogenous STIM2, we report that endogenous STIM2 is constitutively localized in mobile and immobile clusters. The latter associate with ER-PM junctions and recruit Orai1 under basal conditions. Agonist stimulation increases immobile STIM2 clusters, which coordinate recruitment of Orai1 and STIM1 to the junctions. Extended synaptotagmin (E-Syt)2/3 are required for forming the ER-PM junctions, but are not sufficient for STIM2 clustering. Importantly, inositol 1,4,5-triphosphate receptor (IP3R) function and local [Ca2+]ER are the main drivers of immobile STIM2 clusters. Enhancing, or decreasing, IP3R function at ambient [IP3] causes corresponding increase, or attenuation, of immobile STIM2 clusters. We show that immobile STIM2 clusters denote decreases in local [Ca2+]ER mediated by IP3R that is sensed by the STIM2 N terminus. Finally, under basal conditions, ambient PIP2-PLC activity of the cell determines IP3R function, immobilization of STIM2, and basal Ca2+ entry while agonist stimulation augments these processes. Together, our findings reveal that immobilization of STIM2 clusters within ER-PM junctions, a first response to ER-Ca2+ store depletion, is facilitated by the juxtaposition of IP3R and marks a checkpoint for initiation of Ca2+ entry.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Molécula 2 de Interação Estromal/química , Molécula 2 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Análise por Conglomerados , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Neoplasias , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal/genética
20.
J Allergy Clin Immunol ; 153(1): 265-274.e9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797893

RESUMO

BACKGROUND: Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS; or p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency) is an inborn error of immunity caused by PI3Kδ hyperactivity. Resultant immune deficiency and dysregulation lead to recurrent sinopulmonary infections, herpes viremia, autoimmunity, and lymphoproliferation. OBJECTIVE: Leniolisib, a selective PI3Kδ inhibitor, demonstrated favorable impact on immune cell subsets and lymphoproliferation over placebo in patients with APDS over 12 weeks. Here, we report results from an interim analysis of an ongoing open-label, single-arm extension study. METHODS: Patients with APDS aged 12 years or older who completed NCT02435173 or had previous exposure to PI3Kδ inhibitors were eligible. The primary end point was safety, assessed via investigator-reported adverse events (AEs) and clinical/laboratory evaluations. Secondary and exploratory end points included health-related quality of life, inflammatory markers, frequency of infections, and lymphoproliferation. RESULTS: Between September 2016 and August 2021, 37 patients (median age, 20 years; 42.3% female) were enrolled. Of these 37 patients, 26, 9, and 2 patients had previously received leniolisib, placebo, or other PI3Kδ inhibitors, respectively. At the data cutoff date (December 13, 2021), median leniolisib exposure was 102 weeks. Overall, 32 patients (87%) experienced an AE. Most AEs were grades 1 to 3; none were grade 4. One patient with severe baseline comorbidities experienced a grade 5 AE, determined as unrelated to leniolisib treatment. While on leniolisib, patients had reduced annualized infection rates (P = .004), and reductions in immunoglobulin replacement therapy occurred in 10 of 27 patients. Other observations include reduced lymphadenopathy and splenomegaly, improved cytopenias, and normalized lymphocyte subsets. CONCLUSIONS: Leniolisib was well tolerated and maintained durable outcomes with up to 5 years of exposure in 37 patients with APDS. CLINICALTRIALS: gov identifier: NCT02859727.


Assuntos
Síndromes de Imunodeficiência , Linfadenopatia , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Classe I de Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/genética , Qualidade de Vida , Mutação , Síndromes de Imunodeficiência/genética , Linfadenopatia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA