Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Genet ; 104(2): 226-229, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005218

RESUMO

Biallelic Wnt ligand secretion mediator (WLS gene) variants are associated with Zaki syndrome (OMIM: #619648). Here, we report the first case with Zaki syndrome in the Chinese population. Whole-exome gene sequencing (WES) identified compound heterozygous variants in the WLS gene (c.1427A > G; p.Tyr476Cys and c.415C > T, p.Arg139Cys; NM_001002292) in a 16-year-old boy presenting with facial dysmorphism, astigmatism, renal agenesis, and cryptorchidism. In vitro functional characterization showed that the two variants led to decreased WLS production and secretion of WNT3A, eventually affecting the WNT signal. We also found that the decreased mutant WLS expression can be rescued by 4-Phenylbutyric acid (4-PBA).


Assuntos
Receptores Acoplados a Proteínas G , Proteínas Wnt , Masculino , Humanos , Adolescente , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética
2.
Mol Cell Neurosci ; 121: 103754, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35842170

RESUMO

The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.


Assuntos
Precursor de Proteína beta-Amiloide , Proteínas SNARE , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose , Caspase 3/metabolismo , Complexo de Golgi/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/farmacologia , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Regulação para Cima
3.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069413

RESUMO

Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors, Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to determine their regulatory roles in liquid-stored boar sperm at 17 °C. The results indicated that PDK1 and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of 2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize liquid-stored boar semen after their addition in the extender.


Assuntos
Preservação do Sêmen , Sêmen , Suínos , Masculino , Animais , Sêmen/metabolismo , Fenilbutiratos/farmacologia , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Análise do Sêmen , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/metabolismo
4.
Molecules ; 28(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37110551

RESUMO

Bestrophin 1 (Best1) is a chloride channel that localises to the plasma membrane of retinal pigment epithelium (RPE) cells. Mutations in the BEST1 gene are associated with a group of untreatable inherited retinal dystrophies (IRDs) called bestrophinopathies, caused by protein instability and loss-of-function of the Best1 protein. 4PBA and 2-NOAA have been shown to rescue the function, expression, and localisation of Best1 mutants; however, it is of interest to find more potent analogues as the concentration of the drugs required is too high (2.5 mM) to be given therapeutically. A virtual docking model of the COPII Sec24a site, where 4PBA has been shown to bind, was generated and a library of 1416 FDA-approved compounds was screened at the site. The top binding compounds were tested in vitro in whole-cell patch-clamp experiments of HEK293T cells expressing mutant Best1. The application of 25 µM tadalafil resulted in full rescue of Cl- conductance, comparable to wild type Best1 levels, for p.M325T mutant Best1 but not for p.R141H or p.L234V mutants.


Assuntos
Canais de Cloreto , Epitélio Pigmentado da Retina , Humanos , Bestrofinas/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Tadalafila , Células HEK293 , Mutação , Epitélio Pigmentado da Retina/metabolismo , Proteínas de Transporte Vesicular/genética
5.
J Biol Chem ; 296: 100019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33144327

RESUMO

Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity. A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them. Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties. Na,K-ATPase is made in the endoplasmic reticulum (ER), but the glycan-free catalytic α subunit complexes with glycosylated ß subunit in the ER to proceed through Golgi and post-Golgi trafficking. We previously observed classic evidence of protein misfolding in mutations with severe phenotypes: differences in ER retention of endogenous ß1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis. Here we tested two mutations associated with different phenotypes: D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment. Misfolding during biosynthesis in the ER activates the unfolded protein response, a multiarmed program that enhances protein folding capacity, and if that fails, triggers apoptosis. L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the unfolded protein response. In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect. Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD. Encouragingly, however, 4-phenylbutyrate, a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.


Assuntos
Mutação , Dobramento de Proteína , ATPase Trocadora de Sódio-Potássio/genética , Resposta a Proteínas não Dobradas , Apoptose/genética , Retículo Endoplasmático/enzimologia , Células HEK293 , Humanos , Fosforilação , Transporte Proteico , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Neurochem Res ; 47(11): 3385-3401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35922743

RESUMO

Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.


Assuntos
Transtornos Motores , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Citocromos/metabolismo , Citocromos/farmacologia , Citocromos/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Histona Desacetilases/metabolismo , Mitocôndrias/metabolismo , Transtornos Motores/tratamento farmacológico , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nitritos/metabolismo , Doença de Parkinson/metabolismo , Fenilbutiratos , Agregados Proteicos , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/uso terapêutico , alfa-Sinucleína/metabolismo , Proteína X Associada a bcl-2/metabolismo
7.
J Cell Mol Med ; 25(2): 1319-1322, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200471

RESUMO

Dent disease type 1 is caused by mutations in the CLCN5 gene that encodes CLC5, a 2Cl- /H+ exchanger. The CLC5 mutants that have been functionally analysed constitute three major classes based on protein expression, cellular localization and channel function. We tested two small molecules, 4-phenylbutyrate (4PBA) and its analogue 2-naphthoxyacetic acid (2-NOAA), for their effect on mutant CLC5 function and expression by whole-cell patch-clamp and Western blot, respectively. The expression and function of non-Class I CLC5 mutants that have reduced function could be restored by either treatment. Cell viability was reduced in cells treated with 2-NOAA. 4PBA is a FDA-approved drug for the treatment of urea cycle disorders and offers a potential therapy for Dent disease.


Assuntos
Quimiocina CCL5/genética , Doença de Dent/genética , Mutação/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Glicolatos/farmacologia , Células HEK293 , Humanos , Fenilbutiratos/farmacologia
8.
Pharmacol Res ; 165: 105447, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516832

RESUMO

Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1ß and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.


Assuntos
Aterosclerose/imunologia , Células Endoteliais/imunologia , Imunidade Celular/imunologia , Mediadores da Inflamação/imunologia , Piroptose/imunologia , Animais , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/imunologia , Lipoproteínas LDL/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo
9.
Cell Biol Toxicol ; 37(5): 795-809, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33651226

RESUMO

3-Chloro-1, 2-propanediol (3-MCPD) is a food-borne toxic substance well-known for more than 40 years that is mainly associated with nephrotoxicity. A better understanding of 3-MCPD nephrotoxicity is required to devise efficacious strategies to counteract its toxicity. In the present work, the role of endoplasmic reticulum (ER) stress along with its underlying regulatory mechanism in 3-MCPD-mediated renal cytotoxicity was investigated in vivo and in vitro. Our data indicated that 3-MCPD-stimulated ER stress response evidenced by sustained activation of PERK-ATF4-p-CHOP and IRE1 branches in Sprague Dawley (SD) rats and human embryonic kidney (HEK293) cells. Moreover, ER stress-associated specific apoptotic initiator, caspase 12, was over-expressed. Blocking ER stress with its antagonist, 4-phenylbutyric acid (4-PBA), improved the morphology and function of kidney effectively. 4-PBA also increased cell viability, relieved mitochondrial vacuolation, and inhibited cell apoptosis through regulating caspase-dependent intrinsic apoptosis pathways. Furthermore, the enhanced expressions of two mitochondrial fission proteins, DRP1/p-DRP1 and FIS1, and the relocation of DRP1 on mitochondria subjected to 3-MPCD were reversed by 4-PBA, while the expression of the fusion protein, MFN2, was restored. Moreover, cellular Ca2+ overload, the over-expression of CaMKK2, and the loss of mitochondria-associated membranes (MAM) were also relieved after 4-PBA co-treatment. Collectively, our data emphasized that ER stress plays critical role in 3-MCPD-mediated mitochondrial dysfunction and subsequent apoptosis as well as blockage of ER stress ameliorated kidney injury through improving mitochondrial fission/fusion and Ca2+ homeostasis. These findings provide a novel insight into the regulatory role of ER stress in 3-MCPD-associated nephropathy and a potential therapeutic strategy. Graphical Headlights 1. 4-PBA inhibits ER stress mainly through regulating PERK-ATF4-CHOP and IRE1-XBP1s branches. 2. Inhibition of ER stress by 4-PBA mitigates ER associated and mitochondrial apoptosis 3. Inhibition of ER stress by 4-PBA helps maintaining calcium homeostasis and mitochondrial dynamic.


Assuntos
Dinâmica Mitocondrial , alfa-Cloridrina , Animais , Apoptose , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Estresse do Retículo Endoplasmático , Células HEK293 , Homeostase , Humanos , Rim , Ratos , Ratos Sprague-Dawley
10.
FASEB J ; 33(6): 7479-7489, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30888851

RESUMO

Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.-Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.


Assuntos
Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Dobramento de Proteína , Animais , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Homeostase , Camundongos , Camundongos Transgênicos
11.
Pharmacol Res ; 161: 105218, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007418

RESUMO

Endoplasmic reticulum (ER) stress is easily observed in chronic liver disease, which often causes accumulation of unfolded or misfolded proteins in the ER, leading to unfolded protein response (UPR). Regulating protein degradation is an integral part of UPR to relieve ER stress. The major protein degradation system includes the ubiquitin-proteasome system (UPS) and autophagy. All three arms of UPR triggered in response to ER stress can regulate UPS and autophagy. Accumulated misfolded proteins could activate these arms, and then generate various transcription factors to regulate the expression of UPS-related and autophagy-related genes. The protein degradation process regulated by UPR has great significance in many chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, liver fibrosis, and hepatocellular carcinoma(HCC). In most instances, the degradation of excessive proteins protects cells with ER stress survival from apoptosis. According to the specific functions of protein degradation in chronic liver disease, choosing to promote or inhibit this process is promising as a potential method for treating chronic liver disease.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatias/metabolismo , Fígado/metabolismo , Proteostase , Animais , Autofagia , Doença Crônica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/tratamento farmacológico , Hepatopatias/patologia , Proteólise , Proteostase/efeitos dos fármacos , Resposta a Proteínas não Dobradas
12.
Toxicol Ind Health ; 36(12): 1002-1009, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169630

RESUMO

It is well-documented that lead (Pb) toxicity can affect almost all systems in living organisms. It can induce selective autophagy of mitochondria (mitophagy) by triggering reactive oxygen species production. Emerging evidence has suggested that Pb-induced autophagy can also be activated by the endoplasmic reticulum (ER) stress pathway. However, the interplay between ER stress and mitophagy remains to be elucidated. In this study, human embryonic kidney HEK293 cells were employed to investigate the role of ER stress in Pb-induced mitophagy. The results showed that the cell viability was decreased and cell damage was induced after exposure to Pb (0, 0.5, 1, 2, and 4 mM) for 24 h in a dose-dependent manner. Moreover, the expression of LC3-Ⅱ was significantly increased, and the expression of HSP60 was dramatically decreased after exposure to 1 mM and 2 mM Pb, indicating the induction of mitophagy following Pb exposure. Meanwhile, the expressions of activating transcription factor 6, inositol-requiring protein-1α, CCAAT/enhancer binding protein homologous protein, and glucose-regulated protein 78 were dramatically increased after Pb treatment, signifying the initiation of ER stress. Notably, the mitophagic effect was significantly compromised when ER stress was inhibited by 0.5 mM 4-phenylbutyrate, which was evidenced by lesser decreases in HSP60 expression and level of LC3-Ⅱ, suggesting Pb-induced mitophagy may be activated by the ER stress. Taken together, these findings provide a better understanding of Pb toxicity and suggest that Pb-induced ER stress may play a regulatory role in the upstream of mitophagy.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Chumbo/farmacologia , Mitofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fenilbutiratos/farmacologia
13.
Toxicol Mech Methods ; 30(1): 39-47, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31364909

RESUMO

Psoralen has potential hepatotoxicity and has a certain promoting effect on the clinical liver injury of Psoralea corylifolia L (Fructus Psoraleae). This study investigated the underlying mechanisms of psoralen-induced hepatotoxicity in vitro. HepG2 cells were treated with psoralen for 6, 12, 24, or 48 h, and an endoplasmic reticulum (ER) stress-specific inhibitor, 4-PBA, was employed to investigate the mechanism of psoralen on ER stress and unfolded protein response (UPR). Cell viability was tested by MTT assay, ATP assay, and cell death by LDH. The apoptosis was reflected by the flow cytometry, caspase-8, and caspase-3 activates. The expression of ER stress-related markers was determined by RT-PCR and western blot. We found that psoralen significantly decreased cell viability, increased activities of caspase-8 and caspase-3, and upregulated expression of CHOP and BAX in a time- and dose-dependent manner. Moreover, psoralen significantly increased the expression and transcription levels of ER stress-related markers, including Grp78, PERK, eIF2α, ATF4, and ATF6, while IRE1α was not significantly affected. And 4-PBA could effectively inhibit psoralen-induced cell death and apoptosis along with the inhibition of ER stress responses. These results suggested that psoralen causes liver injury due to the induction of the ER stress-mediated apoptosis via PERK-eIF2α-ATF4-CHOP and ATF6-CHOP related pathways.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ficusina/toxicidade , Fígado/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/patologia , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
14.
Cell Struct Funct ; 44(2): 173-182, 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31619600

RESUMO

In yeast Saccharomyces cerevisiae cells, some aberrant multimembrane-spanning proteins are not transported to the cell surface but form and are accumulated in endoplasmic reticulum (ER)-derived subcompartments, known as the ER-associated compartments (ERACs), which are observed as puncta under fluorescence microscopy. Here we show that a mutant of the cell surface protein Pma1, Pma1-2308, was accumulated in the ERACs, as well as the heterologously expressed mammalian cystic fibrosis transmembrane conductance regulator (CFTR), in yeast cells. Pma1-2308 and CFTR were located on the same ERACs. We also note that treatment of cells with 4-phenyl butyric acid (4-PBA) compromised the ERAC formation by Pma1-2308 and CFTR, suggesting that 4-PBA exerts a chaperone-like function in yeast cells. Intriguingly, unlike ER stress induced by the canonical ER stressor tunicamycin, ER stress that was induced by Pma1-2308 was aggravated by 4-PBA. We assume that this observation demonstrates a beneficial aspect of ERACs, and thus propose that the ERACs are formed through aggregation of aberrant transmembrane proteins and work as the accumulation sites of multiple ERAC-forming proteins for their sequestration.Key words: protein aggregation, organelle, unfolded protein response, ER stress, 4-PBA.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Fenilbutiratos/farmacologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
J Cell Biochem ; 120(4): 5962-5973, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317658

RESUMO

The ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of many neurodegenerative diseases. Endoplasmic reticulum (ER) stress is shown to play a pathological role in the development of diabetes and its complications. Hence, the current study is aimed to investigate the role of UPS and ER stress in the cerebral cortex of diabetic rats and examine the therapeutic effect of 4-phenylbutyric acid (4-PBA), an ER stress inhibitor. Male Sprague-Dawley rats were divided into three groups: control, diabetes, and diabetes plus 4-PBA treatment group. Diabetes was induced by single intraperitoneal streptozotocin injection (37 mg/kg body weight [bw]), and 4-PBA was administered (40 mg/kg bw/d, intraperitoneal) for 2 months, starting from 2 months of diabetes induction. At the end of 4 months, cerebral cortex was collected for analysis. Declined proteasome activity and ubiquitin C-terminal hydrolase (UCH)-L1 expression, increased ubiquitinated proteins, and apoptosis were observed in the diabetic rats. The expression of the ubiquitin-activating enzyme E1, UCHL5, and ER stress markers (ATF6, pPERK, and CHOP) was markedly elevated, whereas the expression of ER-associated protein degradation (ERAD) components was downregulated in the diabetic rats. 4-PBA intervention attenuated ER stress, alterations in UPS, and ERAD components in diabetic rats. Importantly, neuronal apoptosis was lowered in 4-PBA-treated diabetic rats. Our observations demonstrate that altered UPS could be one of the underlying mechanisms of neuronal apoptosis in diabetes and chemical chaperones such as 4-PBA could be potential candidates for preventing these alterations under hyperglycemic conditions.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
J Cell Physiol ; 233(1): 60-66, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28158898

RESUMO

Cyclosporine induces overgrowth of human gingiva. Previously we have shown (i) cyclosporine-inducing ER stress in human gingival fibroblasts (HGF), (ii) increased matrix protein expression, and (iii) interference with mitochondrial pro- and anti-apoptotic factors. This study was undertaken to assess the effects of melatonin (an antioxidant), 4PBA (an ER stress inhibitor), and simvastatin on the expression of ER Stress markers as well as on matrix and mitochondrial markers. HGF incubated with cyclosporine, or without melatonin/4PBA/statin. After 24 hr of incubation, mRNA expression of ER stress markers (GRP78, CHOP, XBP1, and XBPs) and matrix protein markers (like α-SMA, VEGF, TGF-ß, CTGF), and mitochondrial apoptosis markers estimated and compared with housekeeping gene GAPDH. Compared to the control cyclosporine significantly augmented ER Stress and matrix proteins, which decreased significantly with the use of melatonin, 4PBA, and simvastatin. The mitochondrial proapoptotic molecule cyclophilin D, as well as Bcl2 expression also decreased after PBA treatment, paralleling an increase in cytochrome c expression. The effect of 4PBA was much more pronounced than the influence of other two. In conclusion, 4PBA could be a viable therapeutic option for drug-induced gingival overgrowth.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Ciclosporina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Crescimento Excessivo da Gengiva/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fenilbutiratos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Gengiva/metabolismo , Gengiva/patologia , Crescimento Excessivo da Gengiva/metabolismo , Crescimento Excessivo da Gengiva/patologia , Humanos , Melatonina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia
17.
Reprod Biol Endocrinol ; 16(1): 85, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176887

RESUMO

BACKGROUND: Cisplatin (CDDP), a widely used chemotherapeutic agent, can induce excessive granulosa cell apoptosis, follicle loss and even premature ovarian insufficiency (POI). However, the mechanism remains elusive, although some studies have indicated the involvement of endoplasmic reticulum stress (ERS). The aim of our study was to investigate the possible mechanism ERS in CDDP-induced granulosa cell apoptosis and follicle loss. METHODS: A POI mouse model was generated by CDDP. The ovaries samples were collected and processed for isobaric tags for relative and absolute quantification analysis (iTRAQ) to screen out our interested proteins of HSPA5 and HSP90AB1, and the decline in their expression were verified by a real-time quantitative PCR and a western blotting assay. In vitro, human granulosa cells, KGN and COV434 cells were transfected with siRNA targeting HSPA5 and HSP90AB1 and then treated with CDDP, or treated with CDDP with/without CDDP+ 4-phenylbutyric acid (4-PBA) and 3-methyladenine (3-MA). The levels of ERS, autophagy and apoptosis were evaluated by western blotting, DALGreen staining and flow cytometry. In vivo, ovaries from mice that received intraperitoneal injections of saline, CDDP, CDDP+ 4-PBA and CDDP+ 3-MA were assayed by immunofluorescence, hematoxylin and eosin (H&E) staining for follicle counting, and terminal-deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining for cell apoptosis assay. The plasma hormone levels were measured by an enzyme-linked immunosorbent assay (ELISA) kit. RESULTS: We have clarified the relationships between ERS, autophagy, and apoptosis in CDDP-induced granulosa cell apoptosis, both in vitro and in vivo. Alleviating ERS by inhibiting HSPA5 and HSP90AB1 attenuated CDDP-induced autophagy and apoptosis. 4-PBA treatment significantly attenuated CDDP-induced cell autophagy and apoptosis in cultured KGN and COV434 cells. However, inhibiting cell autophagy with 3-MA negligibly restored the CDDP-induced changes in ERS and apoptosis. In vivo experiments also demonstrated that treatment with 4-PBA, but not 3-MA, prevented CDDP-induced ovarian damage and hormone dysregulation. CONCLUSIONS: CDDP-induced ERS could promote autophagy and apoptosis in granulosa cells, causing excessive follicle loss and endocrine disorders. Alleviation of ERS with 4-PBA, but not of autophagy with 3-MA, protect against CDDP-induced granulosa cell apoptosis and ovarian damage. Thus, 4-PBA can be used to protect the ovary during chemotherapy in women.


Assuntos
Cisplatino/efeitos adversos , Células da Granulosa/efeitos dos fármacos , Ovário/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Ovário/patologia , Insuficiência Ovariana Primária/induzido quimicamente , Interferência de RNA
18.
Cell Biol Int ; 42(1): 53-62, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28851073

RESUMO

Dysregulation of histone acetylation plays an important role in tumor development. Histone acetylation regulates gene transcription and expression, which is reversibly regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). As an HDAC inhibitor, 4-phenylbutyric acid (4-PBA) can increase histone acetylation levels by inhibiting HDAC activity. While 4-PBA inhibits proliferation of tumor cells in vitro, clinical trials have failed to show benefits of 4-PBA for refractory solid tumors. Here, we found that 4-PBA could enhance the migration capacity of gastric cancer cells. Upregulation of HER3/HER4 and activation of HER3/HER4-ERK pathway was shown to be involved in 4-PBA-induced gastric cancer cell migration. Knockdown of HER3/HER4 blocked HER3/HER4-ERK activation and partially prevented 4-PBA-induced cell migration. Consistently, the ERK inhibitor PD98059 also partially prevented 4-PBA-induced cell migration. Moreover, enhanced levels of acetyl-histones were detected following 4-PBA-treatment, and histone3 acetylation in promoter regions of HER3 and HER4 were confirmed by ChIP. These results demonstrate that 4-PBA promotes gastric cancer cells migration through upregulation of HER3/HER4 subsequent to increased levels of acetyl-histone and activation of ERK signaling. These novel findings provide important considerations for the use of 4-PBA in cancer therapeutics.


Assuntos
Movimento Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Fenilbutiratos/farmacologia , Receptor ErbB-3/metabolismo , Receptor ErbB-4/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Acetilação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regiões Promotoras Genéticas , Receptor ErbB-3/genética , Receptor ErbB-4/genética , Neoplasias Gástricas/enzimologia , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 484(3): 529-535, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153729

RESUMO

BACKGROUND: 4-phenyl butyric acid (4-PBA) has been considered as a key regulator of insulin resistance in obesity. However the mechanism of 4-PBA involved in insulin resistance remains elusive. METHODS: We evaluated the effect of 4-PBA on abnormal autophagy and endoplasmic reticulum (ER) stress in obese mice. 4-PBA was administered in obese mice and adipocyte models, and metabolic parameters, autophagy markers, ER stress indicators, Akt/mTOR signaling and insulin signaling molecular were assessed. RESULTS: 4-PBA treatment not only reversed autophagic dysfunction and ER stress, but also improved impaired insulin signaling in tunicamycin-induced adipocytes, and 4-PBA also inhibited activated ER stress and elevated insulin sensitivity in adipocytes with Atg7 siRNA. Additionally, administration of 4-PBA improves glucose tolerance and insulin sensitivity in obese mice via regulating abnormal autophagy and ER stress in adipose tissue. The protective effects of 4-PBA were nullified by suppression of Akt and mTOR in adipocytes, suggesting that 4-PBA inhibits autophagy and restores insulin sensitivity via Akt/mTOR signaling partially. CONCLUSIONS: 4-PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling partly, which could be regarded as novel opportunities for treatment of insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Autofagia/efeitos dos fármacos , Butilaminas/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Arch Biochem Biophys ; 627: 10-20, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28606465

RESUMO

PURPOSE: Diabetic retinopathy (DR) is the most frequently occurring complication of diabetes. Alterations in ubiquitin-proteasome system (UPS) have been associated with several degenerative disorders. Hence, in this study, we investigated the status and role of UPS and ER stress in the retina of diabetic rats. METHODS: Diabetes was induced in rats by streptozotocin. Retinal markers, ER stress markers, components of UPS, ERAD, and autophagy were analyzed after 2- and 4-months of diabetes. Apoptosis was analyzed by TUNEL Assay. RESULTS: There were increased acellular capillaries and pericyte loss in diabetic rat retina. Decreased protein expression of UPS components - ubiquitin activating enzyme (E1), deubiquitinating enzymes (UCHL1 and UCHL5), SIAH1 (E3 ligase) and free ubiquitin were observed in the diabetic rats. Increased ER stress markers (ATF6, XBP1, and CHOP), decreased expression of HRD1, declined autophagy (LC3B) and increased apoptosis were observed in diabetic rats. Interestingly, treatment of diabetic rats with a chemical chaperone (4-PBA) restored the levels of DUBs and ameliorated ER stress-induced retinal cell death in type 1 diabetic rats. CONCLUSION: The declined UPS components: E1 and HRD1 in the retina of diabetic rats could elicit ER stress, and the prolonged ER stress may trigger CHOP-mediated neuronal apoptosis.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Retina/patologia , Ubiquitina/metabolismo , Animais , Apoptose , Autofagia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Complexo de Endopeptidases do Proteassoma/análise , Ratos Sprague-Dawley , Retina/metabolismo , Rodopsina/análise , Rodopsina/metabolismo , Ubiquitina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA