Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-14, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590018

RESUMO

The aim of this study was to investigate the insecticidal properties of essential oil derived from Eucalyptus cinerea leaves and its main component, 1,8-cineole, against two significant pests of stored dates, Ectomyelois ceratoniae and Ephestia kuehniella (Pyralidae). The impact of the treatment on the sensory characteristics of date fruits was assessed to verify the complete absence of off-odours and off-flavours. Gas chromatography - mass spectrometry analysis of E. cinerea essential oil revealed that the primary compound was 1,8-cineole (74.5%). Fumigant toxicity of the two pests, indicated that first instar larvae (L1) exhibited greater tolerance to E. cinerea EO and 1,8-cineole than L5, while adult forms were more susceptible than larvae. The E. cinerea EO had a noticeable pest contact activity when used at a concentration of 0.35 µL/cm2 caused 100 and 88.3% mortality to E. ceratoniae and E. kueheniella, respectively, after 1 hour of exposure. Hedonic evaluation showed that consumers' appreciation of fumigated dates was not significantly different to the no treated dates.

2.
Microb Pathog ; 184: 106375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774989

RESUMO

Food-borne pathogenic bacteria are a major public health concern globally. Traditional control methods using antibiotics have limitations, leading to the exploration of alternative strategies. Essential oils such as cardamom possess antimicrobial properties and have shown efficacy against food-borne pathogenic bacteria. The utilization of essential oils and their bioactive constituents in food preservation is a viable strategy to prolong the shelf-life of food products while ensuring their quality and safety. To the best of our knowledge, there are no studies that have utilized 1,8-cineole (the main active constituent of cardamom essential oil) as a preservative in meat, so this study might be the first to utilize 1,8-cineole as an antibacterial agent in meat preservation. The application of 1,8-cineole had a significant suppressive impact on the growth rate of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in meat samples stored for 7 days at 4 °C. Additionally, the surface color of the meat samples was not negatively impacted by the application of 1,8-cineole. The minimum inhibitory concentration was 12.5-25 mg/ml, and the minimum bactericidal concentration was 25-50.0 mg/ml. The bacterial cell membrane may be the target of cardamom, causing leakage of intracellular proteins, ATP, and DNA. The obtained data in this study may pave a new avenue for using 1,8-cineole as a new perspective for dealing with this problem of food-borne pathogens and food preservation, such as meat.


Assuntos
Elettaria , Listeria monocytogenes , Óleos Voláteis , Eucaliptol , Microbiologia de Alimentos , Carne/microbiologia , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Testes de Sensibilidade Microbiana
3.
Biol Pharm Bull ; 46(10): 1371-1384, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532524

RESUMO

This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Oxigênio , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Eucaliptol/farmacologia , Eucaliptol/metabolismo , Glucose/metabolismo , Transdução de Sinais , Estresse Oxidativo , Antioxidantes/farmacologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias/metabolismo , Heme Oxigenase-1/metabolismo
4.
Biosci Biotechnol Biochem ; 87(5): 563-568, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36810583

RESUMO

Terpenoid is an important group of compounds not only as biocomponents but also as useful secondary metabolites. A volatile terpenoid 1,8-cineole, which is used as a food additive, flavoring agent, cosmetic, etc., is also attracting attention from a medical perspective due to its antiinflammation and antioxidation. The 1,8-cineole fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source supplement is necessary for a high-yield 1,8-cineole production. We constructed the 1,8-cineole-producing cyanobacteria toward a carbon-free and sustainable 1,8-cineole production. cnsA, the 1,8-cineole synthase gene in Streptomyces clavuligerus ATCC 27064, was introduced and overexpressed in the cyanobacterium Synechococcus elongatus PCC 7942. We succeeded in producing an average of 105.6 µg g-1 wet cell weight of 1,8-cineole in S. elongatus 7942 without supplementing any carbon source. Using the cyanobacteria expression system is an efficient approach to producing 1,8-cineole by photosynthesis.


Assuntos
Engenharia Metabólica , Synechococcus , Eucaliptol/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Synechococcus/genética , Terpenos/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047133

RESUMO

Inflammatory bowel disease, comprising Crohn's disease (CD) and ulcerative colitis (UC), is often debilitating. The disease etiology is multifactorial, involving genetic susceptibility, microbial dysregulation, abnormal immune activation, and environmental factors. Currently, available drug therapies are associated with adverse effects when used long-term. Therefore, the search for new drug candidates to treat IBD is imperative. The peroxisome proliferator-activated receptor-γ (PPARγ) is highly expressed in the colon. PPARγ plays a vital role in regulating colonic inflammation. 1,8-cineole, also known as eucalyptol, is a monoterpene oxide present in various aromatic plants which possess potent anti-inflammatory activity. Molecular docking and dynamics studies revealed that 1,8-cineole binds to PPARγ and if it were an agonist, that would explain the anti-inflammatory effects of 1,8-cineole. Therefore, we investigated the role of 1,8-cineole in colonic inflammation, using both in vivo and in vitro experimental approaches. Dextran sodium sulfate (DSS)-induced colitis was used as the in vivo model, and tumor necrosis factor-α (TNFα)-stimulated HT-29 cells as the in vitro model. 1,8-cineole treatment significantly decreased the inflammatory response in DSS-induced colitis mice. 1,8-cineole treatment also increased nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus to induce potent antioxidant effects. 1,8-cineole also increased colonic PPARγ protein expression. Similarly, 1,8-cineole decreased proinflammatory chemokine production and increased PPARγ protein expression in TNFα-stimulated HT-29 cells. 1,8-cineole also increased PPARγ promoter activity time-dependently. Because of its potent anti-inflammatory effects, 1,8-cineole may be valuable in treating IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana , Eucaliptol/farmacologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373528

RESUMO

Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker's method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs-Helmholtz equation. Robinson-Mathias, and Peng-Robinson-Stryjek-Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included.


Assuntos
1-Propanol , 2-Propanol , Eucaliptol , Termodinâmica , Gases , Propanóis
7.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005233

RESUMO

Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, a specific low-molecular compound named 1,8-cineole (cineole) from Cinnamomum kanehirae Hay was first reported to have remarkably promoted the asexual sporulation of A. cinnamomea in submerged fermentation (AcSmF). Then, RNA sequencing, real-time quantitative PCR, and a literature review were performed to predict the molecular regulatory mechanisms underlying the cineole-promoted sporulation of AcSmF. The available evidence supports the hypothesis that after receiving the signal of cineole through cell receptors Wsc1 and Mid2, Pkc1 promoted the expression levels of rlm1 and wetA and facilitated their transfer to the cell wall integrity (CWI) signal pathway, and wetA in turn promoted the sporulation of AcSmF. Moreover, cineole changed the membrane functional state of the A. cinnamomea cell and thus activated the heat stress response by the CWI pathway. Then, heat shock protein 90 and its chaperone Cdc37 promoted the expression of stuA and brlA, thus promoting sporulation of AcSmF. In addition, cineole promoted the expression of areA, flbA, and flbD through the transcription factor NCP1 and inhibited the expression of pkaA through the ammonium permease of MEP, finally promoting the sporulation of AcSmF. This study may improve the efficiency of the inoculum (spores) preparation of AcSmF and thereby enhance the production benefits of A. cinnamomea.


Assuntos
Antrodia , Cinnamomum , Transcriptoma , Fermentação , Eucaliptol/farmacologia
8.
Neurochem Res ; 47(12): 3854-3862, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36331666

RESUMO

Eucalyptol (1.8-cineole), an active component in traditional Chinese medicine Artemisia argyi for moxibustion. Previous studies have shown that eucalyptol has anti-tumor effects on leukemia and colon cancer. Nonetheless, the effect and mechanism of eucalyptol on neuroblastoma remains unclear. In the present study, we intended to reveal the effect and mechanism of eucalyptol treatment on the neuroblastoma cell line SH-SY5Y through transcriptome analysis. In the group treated with eucalyptol, 566 brain genes were up-regulated, while 757 genes were down-regulated. GO function analysis showed that positive regulation of cell cycle was down-regulated in biological processes. Meanwhile, cancer-related pathways were identified in KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, including pathways in cancer, PI3K-Akt signaling pathway, cAMP signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, p53 signaling pathway, and additional pathways. Furthermore, we found a key gene, such as MYC, by constructing a network of cancer related pathways with differentially expressed genes and transcription factor analysis. In conclusion, our research indicates that MYC might play a central role in the anit-tumor mechanisms of eucalyptol.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Eucaliptol/farmacologia , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , Linhagem Celular , Transcriptoma
9.
Pharmacol Res ; 180: 106151, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247601

RESUMO

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Assuntos
Cardiomiopatias , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Conexina 43 , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Ventrículos do Coração/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo
10.
Fish Shellfish Immunol ; 127: 99-108, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709895

RESUMO

Imidacloprid (IMI), a systemic neonicotinoid insecticide widely used in agriculture, resulting in persistence in aquatic environments that threaten the survival of organisms. Eucalyptol (EUC), a monoterpenoid found in plants, can be applied to medicine, food, and aquaculture. However, the potential protective effects of EUC on cell damage under neonicotinoid pesticide toxicity, and the role of ER stress and its mediated apoptosis and necroptosis in it, remain unclear. Therefore, we treated Ctenopharyngodon idellus kidney (CIK) cells with 20 mg/L IMI and 20 µM EUC for 48 h. The results showed that IMI exposure caused a higher GRP78 levels, activated ATF6, PERK-eIF2α and IRE1-XBP1 pathways, led to the decline of ATPase activities and ATP content, induced the expression of cytokine (TNF-α, IL-1ß, IL-6 and INF-γ), triggered BCL2/BAX-mediated apoptosis and RIP1/RIP3/MLKL-dependent necroptosis in the CIK cell line. Surprisingly, EUC had an effect against IMI-induced cytotoxicity, showing that it effectively mitigated the above-mentioned IMI-exposure-induced changes. Taken together, these results suggested that EUC could alleviated IMI-induced cell death and dysimmunity by recovering ER stress/mitochondria imbalance. These results partly explained the mechanism of biological threat on fish under IMI exposure and the potential application value of EUC in aquaculture.


Assuntos
Carpas , Animais , Apoptose , Retículo Endoplasmático , Eucaliptol/farmacologia , Rim/metabolismo , Mitocôndrias , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos
11.
Bioorg Chem ; 124: 105823, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489272

RESUMO

Combination drug therapy has become an effective strategy for chronic metabolic disease, especially cardiovascular disease. In the present study, possible drug combinations were screened and the mechanism of the combinations against cardiac hypertrophy was examined within 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene.H9c2 cells were treatment with 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene individually or in combination for 24 h after isoprenaline stimulation. Cell viability was detected by the MTT assay. Subsequently, bioinformatic analysis and network pharmacology were used to reveal the multi-targeted synergistic therapeutic effect of the combination treatment compounds on cardiac hypertrophy. Ultimately, western blot and elisa was performed to analyses the protein expression in vivo. MTT results found that 1,8-cineole and ß-caryophyllene synergistically increased cell viability with CalcuSyn software analyses. Specifically, bioinformatic and network pharmacology analysis showed PTGS2, TNF, IL-6, AKT1, NOS2, and CAT were identified as the key targets. P13K-AKT signaling pathway was involved in the reversal of cardiac hypertrophy by the combination of 1,8-cineole and ß-caryophyllene. The in vitro results indicated that the combination synergistically treated the isoprenaline-induced mice against structural and functional myocardial damage via the P13K-AKT signaling pathway. Collectively, the combined application of 1,8-cineole and ß-caryophyllene synergistically reverses cardiac hypertrophy in isoprenaline-induced H9c2 cells and mice.


Assuntos
Cardiomegalia , Proteínas Proto-Oncogênicas c-akt , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Isoproterenol/efeitos adversos , Camundongos , Sesquiterpenos Policíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
12.
Pestic Biochem Physiol ; 184: 105124, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715062

RESUMO

The fall webworm, Hyphantria cunea (Drury), is a harmful polyphagous global defoliator. The major chemical components of Artemisia annua essential oil (EO) was found to contain (±)-camphor (16.42%), 1,8-cineole (6.22%), α-pinene (6%), caryophyllene (5.19%), and α-selinene (5.17%). The highest toxicity was recorded for EO of A. annua (LD50 = 305.05 µg/larva), followed by (±)-camphor (LD50 = 465.03 µg/larva) and 1,8-cineole (LD50 = 573.49 µg/larva). The binary mixtures of compounds expressed a weaker activity compared to individuals. The (±)-camphor was found to be antagonistic to 1,8-cineole. The biochemical compounds of treated larvae were also determined. The activity level of alanin and aspartate aminotransferase decreased sharply while acid and alkaline phosphatase increased. Activity of lactate dehydrogenase was significantly higher than the control group at 24 h, but decreased significantly after 48 h in all treatments. The activity of esterases were decreased in the treated larvae. The glutathione S-transferase significantly increased in all time intervals. Overall the current results suggest that the sweet wormwood (A. annua) EO and its components could be a safe and environmentally friendly approach in possible control of fall webworm (H. cunea).


Assuntos
Artemisia annua , Mariposas , Óleos Voláteis , Animais , Artemisia annua/química , Cânfora , Eucaliptol , Larva , Óleos Voláteis/química , Óleos Voláteis/toxicidade
13.
Chem Biodivers ; 19(3): e202100954, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35170197

RESUMO

The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and ß-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.


Assuntos
Artemisia annua , Artemisia , Óleos Voláteis , Cânfora , Eucaliptol , Sérvia
14.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558044

RESUMO

BACKGROUND: Curcumin is a natural product obtained from the rhizome of Curcuma longa. Rosemary (Rosmarinus officinalis) is a medicinal and aromatic plant that is widely spread in the Mediterranean region. Both Curcumin and rosemary essential oil are natural products of high medicinal and pharmacological significance. The hepatoprotective effect of both natural products is well-established; however, the mechanism of such action is not fully understood. Thus, this study is an attempt to explore the hepatoprotective mechanism of action of these remedies through their effect on MEK and ERK proteins. Furthermore, the effect of rosemary essential oil on the plasma concentration of curcumin has been scrutinized. MATERIALS AND METHODS: The major constituents of REO were qualitatively and quantitatively determined by GC/MS and GC/FID, respectively. Curcumin and rosemary essential oil were given to mice in a pre-treatment model, followed by induction of liver injury through a high dose of paracetamol. Serum liver enzymes, lipid peroxidation, antioxidant activities, the inflammatory and apoptotic biomarkers, as well as the MEK and ERK portions, were verified. The plasma levels of curcumin were determined in the presence and absence of rosemary essential oil. RESULTS: The major constituents of REO were 1,8-cineole (51.52%), camphor (10.52%), and α-pinene (8.41%). The results revealed a superior hepatoprotective activity of the combination when compared to each natural product alone, as demonstrated by the lowered liver enzymes, lipid peroxidation, mitigated inflammatory and apoptotic biomarkers, and enhanced antioxidant activities. Furthermore, the combination induced the overexpression of MEK and ERK proteins, providing evidence for the involvement of this cascade in the hepatoprotective activity of such natural products. The administration of rosemary essential oil with curcumin enhanced the curcuminoid plasma level. CONCLUSION: The co-administration of both curcumin and rosemary essential oil together enhanced both their hepatoprotective activity and the level of curcumin in plasma, indicating a synergistic activity between both natural products.


Assuntos
Curcumina , Óleos Voláteis , Rosmarinus , Camundongos , Animais , Curcumina/farmacologia , Antioxidantes/farmacologia , Sistema de Sinalização das MAP Quinases , Óleos Voláteis/farmacologia , Biomarcadores , Quinases de Proteína Quinase Ativadas por Mitógeno
15.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807427

RESUMO

Mosquitoes represent one of the most important vectors and are responsible for the transmission of many arboviruses that affect human and animal health. The chemical method using synthetic insecticides disturbs the environmental system and promotes the appearance of resistant insect species. Therefore, this study investigated the insecticidal effect of some binary monoterpene combinations (1,8 cineole + α-pinene and carvone + R (+)-pulegone) using a mixture design approach. The fumigant toxicity was evaluated against Culex pipiens female adults using glass jars. The results show that the toxicity varies according to the proportions of each compound. Indeed, Mixture 1 (1,8-cineole + α-pinene) displayed a strong toxic effect (51.00 ± 0.86% after 24 h and 100.00 ± 0.70% after 48 h) when the pure compounds were tested at 0.25/0.75 proportions of 1,8-cineole and α-pinene, respectively. Nevertheless, the equal proportion (0.5/0.5) of carvone and R (+)-pulegone in Mixture 2 exhibited a toxic effect of 54.35 ± 0.75% after 24 h and 89.96 ± 0.14% after 48 h, respectively. For Mixture 1, the maximum area of mortality that the proposed model indicated was obtained between 0/1 and 0.25/0.75, while the maximum area of mortality in the case of Mixture 2 was obtained between 0.25/0.75 and 0.75/0.25. Moreover, the maximum possible values of mortality that could be achieved by the validated model were found to be 51.44% (after 24 h) and 100.24% (after 48 h) for Mixture 1 and 54.67% (after 24 h) and 89.99% (after 48 h) for Mixture 2. It can be said that all purev molecules tested through the binary mixtures acted together, which enhanced the insecticide's effectiveness. These findings are very promising, as the chemical insecticide (deltamethrin) killed only 19.29 ± 0.01% and 34.05 ± 1.01% of the female adults after 24 h and 48 h, respectively. Thus, the findings of our research could help with the development of botanical insecticides that might contribute to management programs for controlling vectors of important diseases.


Assuntos
Culex , Culicidae , Inseticidas , Animais , Eucaliptol/farmacologia , Feminino , Inseticidas/química , Larva , Monoterpenos/farmacologia , Mosquitos Vetores
16.
Molecules ; 27(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745036

RESUMO

Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer's disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3ß and reducing Aß production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Eucaliptol/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação , Proteínas tau/metabolismo
17.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500391

RESUMO

During the postharvest period, citrus fruits are exposed to Penicillium italicum, Penicillium digitatum, and Geotrichum candidum. Pesticides such as imazalil (IMZ), thiabendazole (TBZ), orthophenylphenol (OPP), and guazatine (GUA) are commonly used as antifungals. Glyphosate (GP) is also used in citrus fields to eliminate weed growth. The sensitivity of fungal pathogens of citrus fruit to these pesticides and 1,8-cineole was evaluated, and the effect of GP on the development of cross-resistance to other chemicals was monitored over a period of 3 weeks. IMZ most effectively inhibited the mycelial growth and spore germination of P. digitatum and P. italicum, with minimum inhibitory concentrations (MICs) of 0.01 and 0.05 mg/mL, respectively, followed by 1,8-cineole, GP, and TBZ. 1,8-Cineole and GP more effectively inhibited the mycelial growth and spore germination of G. candidum, with minimum inhibitory concentrations (MICs) of 0.2 and 1.0 mg/mL, respectively, than OPP or GUA. For the spore germination assay, all substances tested showed a total inhibitory effect. Subculturing the fungal strains in culture media containing increasing concentrations of GP induced fungal tolerance to GP as well as to the fungicides. In soil, experiments confirmed that GP induced the tolerance of P. digitatum to TBZ and GP and the tolerance of P. italicum to IMZ, TBZ, and GP. However, no tolerance was recorded against 1,8-cineole. In conclusion, it can be said that 1,8-cineole may be recommended as an alternative to conventional fungicides. In addition, these results indicate that caution should be taken when using GP in citrus fields.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Citrus/química , Eucaliptol/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/análise , Tiabendazol/análise , Antifúngicos/farmacologia , Antifúngicos/análise , Frutas/química
18.
Saudi Pharm J ; 30(12): 1691-1699, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36164456

RESUMO

Coronavirus is a type of acute atypical respiratory disease representing the leading cause of death worldwide. Eucalyptol (EUC) known also as 1,8-cineole is a potential inhibitor candidate for COVID-19 (main protease-Mpro) with effective antiviral properties but undergoes physico-chemical instability and poor water solubility. Nano-emulsion (NE) is a promising drug delivery system to improve the stability and efficacy of drugs. This work focuses on studying the anti- COVID-19 activity of EUC by developing nebulized eucalyptol nano-emulsion (EUC-NE) as a potentially effective treatment for COVID-19. The EUC -NE formulation was prepared using Tween 80 as a surfactant. In vitro evaluation of the EUC-NE formulation displayed an entrapment efficiency of 77.49 %, a droplet size of 122.37 nm, and an EUC % release of 84.7 %. The aerodynamic characterization and cytotoxicity of EUC-NE formulation were assessed, and results showed high lung deposition and low inhibitory concentration. The antiviral mechanism of the EUC-NE formulation was performed, and it was found that it exerts its action by virucidal, viral replication, and viral adsorption. Our results confirmed the antiviral activity of the EUC-NE formulation against COVID-19 and the efficacy of nano-emulsion as a delivery system, which can improve the cytotoxicity and inhibitory activity of EUC.

19.
Pharmacol Res ; 164: 105376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33316383

RESUMO

Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.


Assuntos
Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Animais , Antidepressivos/química , Antidepressivos/classificação , Depressão/classificação , Transtorno Depressivo/classificação , Humanos , Óleos Voláteis/química , Óleos Voláteis/classificação , Fitoterapia , Óleos de Plantas/química , Óleos de Plantas/classificação , Plantas Medicinais
20.
Biochem Genet ; 59(1): 315-334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33044583

RESUMO

The aim of this study to investigate the potential effects of essential oils and compounds obtained from MC fruit on sepsis induced endothelial cell damage in human umbilical cord vein endothelial cells (HUVECs) at molecular and cellular levels on in vitro sepsis model. A sepsis model was induced by the application of LPS. The HUVEC treatment groups were as follows: control, LPS, MC, MC plus LPS, 1.8 cineole, 1.8 cineole plus LPS, α-pinene, α-pinene plus LPS, α-terpineol, and α-terpineol plus LPS. Following the treatments, cell proliferation was analyzed using the xCELLigence® system. The mRNA expression of various cytokines [tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and IL-6] and endothelial nitric oxide (eNOS) were determined by quantitative polymerase chain reaction (qPCR) analysis. The 1.8 cineole and α-pinene treatments at specific doses showed toxic effects on α-terpineine, although it did not result in a change in the cellular index as compared with that of the control group. The application of LPS to HUVECs led to a significant decrease in the cellular index, depending on the treatment time. It did not correct the decreased cell index of MC plus LPS and α-terpineol plus LPS groups as compared with that of the LPS-only group. The 1.8 cineole plus LPS treatment and α-pinene plus LPS treatment significantly increased the cell index as compared with that of the LPS-only treatment, and the cell index in these groups was closer to that of the control. According to the results of the qPCR analysis, neither the MC-only treatment nor the α-terpineol-only treatment significantly reduced cellular damage caused by LPS-induced increases in TNF-α, IL-1ß, IL-6, and eNOS mRNA expression. However, both the 1.8 cineole treatment and α-pinene treatments significantly decreased TNF-α, IL-1ß, IL-6, and eNOS mRNA expression induced by LPS. Volatile oil obtained from MC fruit and the MC compound α-terpineol had no effect on the decreased cell index and increased cytokine response due to LPS-induced endothelial cell damage. However, 1.8 cineole and α-pinene, other major components of MC fruit, ameliorated LPS-induced damage in HUVECs at cellular and biomolecular levels (TNF-α, IL-1ß, IL-6, and eNOS).


Assuntos
Monoterpenos Bicíclicos/farmacologia , Monoterpenos Cicloexânicos/farmacologia , Endotoxemia/tratamento farmacológico , Eucaliptol/farmacologia , Myrtus/química , Óleos Voláteis , Sepse/tratamento farmacológico , Proliferação de Células , Citocinas/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA