Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Purinergic Signal ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833181

RESUMO

The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.

2.
Mol Biol Rep ; 51(1): 464, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551734

RESUMO

Adenosine receptors are important in the normal physiological function of cells and the pathogenesis of various cancer cells, including breast cancer cells. The activity of adenosine receptors in cancer cells is related to cell proliferation, angiogenesis, metastasis, immune system evasion, and interference with apoptosis. Considering the different roles of adenosine receptors in cancer cells, we intend to investigate the function of adenosine receptors and their biological pathways in breast cancer to improve understanding of therapeutically relevant signaling pathways.


Assuntos
Neoplasias da Mama , Receptor A3 de Adenosina , Humanos , Feminino , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Neoplasias da Mama/genética , Apoptose
3.
Am J Physiol Cell Physiol ; 324(2): C327-C338, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503240

RESUMO

Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor ß (TGFß) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFß regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFß signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFß-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFß signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFß signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.


Assuntos
5'-Nucleotidase , Adenosina , Adenosina/metabolismo , Elastina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta
4.
J Enzyme Inhib Med Chem ; 37(1): 1514-1526, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35616298

RESUMO

A series of novel dual A2A/A2B AR antagonists based on the triazole-pyrimidine-methylbenzonitrile core were designed and synthesised. The A2A AR antagonist cAMP functional assay results were encouraging for most target compounds containing quinoline or its open-ring bioisosteres. In addition, compound 7i displayed better inhibitory activity on A2B AR (IC50 14.12 nM) and higher potency in IL-2 production than AB928. Moreover, molecular docking studies were carried out to explain the rationality of molecular design and the activity of compound 7i. Further studies on 7f and 7i revealed good liver microsomes stabilities and acceptable in vivo PK profiles. This study provides insight into the future development of dual A2A/A2B AR antagonists for cancer immunotherapy.


Assuntos
Antagonistas de Receptores Purinérgicos P1 , Triazóis , Antagonistas do Receptor A2 de Adenosina/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Receptor A2A de Adenosina , Receptor A2B de Adenosina , Triazóis/farmacologia
5.
Toxicol Appl Pharmacol ; 422: 115460, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774062

RESUMO

To explore the protective mechanism of simvastatin in acute lung injury (ALI), the lipopolysaccharide (LPS) induced (5 mg/kg) ALI rat model was used to examine the effects of simvastatin. Following simvastatin treatment, the histopathological evaluation of lung tissues was made using hematoxylin and eosin (H&E) staining. Also, myeloperoxidase (MPO) activity and the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-10 were determined by ELISA. Blood gas analyses of arterial blood samples were performed to assess the pulmonary gas exchange. Moreover, the neutrophil count and total protein content were determined in the bronchoalveolar lavage (BAL) fluid. The ratio of wet lung to dry lung (W/D) and the alveolar fluid clearance (AFC) were calculated to estimate the severity of edema. Lastly, the levels of A2BAR, CFTR, claudin4, and claudin18 were also measured by qRT-PCR and Western blotting. Simvastatin treatment, in a dose-related manner, markedly improved the lung histological injury and decreased the levels of TNF-α, IL-1ß, and increased IL-10 in LPS induced ALI. Also, pulmonary neutrophil count was alleviated. Besides, a decreased ratio of W/D lung also confirmed the simvastatin intervention. Notably, simvastatin reduced the levels of A2BAR, CFTR, and claudin18 but upregulated claudin4 in lung tissues. Additionally, treatment with PSB1115, an antagonist of A2BAR, countered the protective effect of simvastatin in ALI. Our study demonstrates that simvastatin has a protective effect against LPS-induced ALI by activating A2BAR and should be exploited as a novel therapeutic target for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Agonistas do Receptor A2 de Adenosina/farmacologia , Pulmão/efeitos dos fármacos , Receptor A2B de Adenosina/efeitos dos fármacos , Sinvastatina/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Claudina-4/metabolismo , Claudinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Edema Pulmonar/prevenção & controle , Ratos Sprague-Dawley , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais
6.
J Enzyme Inhib Med Chem ; 36(1): 286-294, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33334192

RESUMO

Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR.


Assuntos
Indóis/farmacologia , Receptor A2B de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
7.
J Neurosci ; 39(22): 4387-4402, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926752

RESUMO

Glioblastoma (GB) is one of the deadliest brain cancers to afflict humans, and it has a very poor survival rate even with treatment. The extracellular adenosine-generating enzyme CD73 is involved in many cellular functions that can be usurped by tumors, including cell adhesion, proliferation, invasion, and angiogenesis. We set out to determine the role of CD73 in GB pathogenesis. To do this, we established a unique GB mouse model (CD73-FLK) in which we spatially expressed CD73 on endothelial cells in CD73-/- mice. This allowed us to elucidate the mechanism of host CD73 versus GB-expressed CD73 by comparing GB pathogenesis in WT, CD73-/-, and CD73-FLK mice. GB in CD73-/- mice had decreased tumor size, decreased tumor vessel density, and reduced tumor invasiveness compared with GB in WT mice. Interestingly, GBs in CD73-FLK mice were much more invasive and caused complete distortion of the brain morphology. We showed a 20-fold upregulation of A2B AR on GB compared with sham, and its activation induced matrix metalloproteinase-2, which enhanced GB pathogenesis. Inhibition of A2B AR signaling decreased multidrug resistance transporter protein expression, including permeability glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Further, we showed that blockade of A2B AR signaling potently increased GB cell death induced by the chemotherapeutic drug temozolomide. Together, these findings suggest that CD73 and A2B AR play a multifaceted role in GB pathogenesis and progression and that targeting the CD73-A2B AR axis can benefit GB patients and inform new approaches for therapy to treat GB patients.SIGNIFICANCE STATEMENT Glioblastoma (GB) is the most devastating primary brain tumor. GB patients' median survival is 16 months even with treatment. It is critical that we develop prophylaxes to advance GB treatment and improve patient survival. CD73-generated adenosine has been implicated in cancer pathogenesis, but its role in GB was not ascertained. Here, we demonstrated that host CD73 plays a prominent role in multiple areas of glioblastoma pathogenesis, including promoting GB growth, its angiogenesis, and its invasiveness. We found a 20-fold increase in A2B adenosine receptor (AR) expression on GB compared with sham, and its inhibition increased GB chemosensitivity to temozolomide. These findings strongly indicate that blockade or inhibition of CD73 and the A2B AR are prime targets for future GB therapy.


Assuntos
5'-Nucleotidase/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
8.
Cytokine ; 130: 155082, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32259773

RESUMO

Cervical cancer (CeCa) produces large amounts of IL-10, which downregulates the major histocompatibility complex class I molecules (HLA-I) in cancer cells and inhibits the immune response mediated by cytotoxic T lymphocytes (CTLs). In this study, we analyzed the ability of CeCa cells to produce IL-10 through the CD73-adenosine pathway and its effect on the downregulation of HLA-I molecules to evade CTL-mediated immune recognition. CeCa cells cultured in the presence of ≥10 µM AMP or adenosine produced 4.5-6 times as much IL-10 as unstimulated cells. The silencing of CD73 or the blocking of A2BR with the specific antagonist MRS1754 reversed this effect. In addition, IL-10 decreased the expression of HLA-I molecules, resulting in the protection of CeCa cells against the cytotoxic activity of CTLs. The addition of MRS1754 or anti-IL-10 reversed the decrease in HLA-I molecules and favored the cytotoxic activity of CTLs. These results strongly suggest the presence of a feedback loop encompassing the adenosinergic pathway, the production of IL-10, and the downregulation of HLA-I molecules in CeCa cells that favors immune evasion and thus tumor progression. This pathway may have clinical importance as a therapeutic target.

9.
Purinergic Signal ; 16(3): 337-345, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632520

RESUMO

Electroacupuncture (EA) can improve myocardial ischemia (MI) injury; nevertheless, the mechanism is not entirely clear. And there were disagreements about whether the effect of EA at acupoint in disease-affected meridian is better than EA at acupoint in non-affected meridian and sham acupoint. Here, we showed that the effect of EA at Neiguan (PC6) is better than EA at Hegu (LI4) and sham acupoint in affecting RPP and ECG, increasing ATP and ADO production, decreasing AMP production, and upregulating the mRNA expression levels of A1AR, A2aAR, and A2bAR; knockdown of A1AR or A2bAR reversed the effect of EA at PC6 in alleviating MI injury; knockdown of A2aAR had no influence on the cardiac protection of EA at PC6; thus, the cardioprotective effect of EA at PC6 needs A1AR and A2bAR, instead of A2aAR; considering that the cardio protection of adenosine receptor needs activation of other adenosine receptors, one of the reasons may be that after silence of A1AR or A2bAR, EA at PC6 could not impact the expression levels of the other two adenosine receptors, and after silence of A2aAR, EA at PC6 could impact the expression levels of A1AR and A2bAR. These results suggested that EA at PC6 may be a potential and effective treatment for MI by activation of A1AR and A2bAR.


Assuntos
Eletroacupuntura , Isquemia Miocárdica/terapia , Receptores Purinérgicos P1/metabolismo , Animais , Feminino , Masculino , Isquemia Miocárdica/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366046

RESUMO

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Assuntos
Adenosina/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Estrutura Molecular
11.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429433

RESUMO

Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules.


Assuntos
Diazepam/análogos & derivados , Desenho de Fármacos , Moduladores GABAérgicos/síntese química , Indóis/síntese química , Receptores de GABA-A/metabolismo , Animais , Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Humanos , Indóis/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/agonistas , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptor A2B de Adenosina/química , Receptor A2B de Adenosina/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Receptores de GABA-A/química , Relação Estrutura-Atividade
12.
J Nanobiotechnology ; 17(1): 45, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922349

RESUMO

BACKGROUND: Multi-walled carbon nanotube (MWCNT)-induced lung fibrosis leads to health concerns in human. However, the mechanisms underlying fibrosis pathogenesis remains unclear. The adenosine (ADO) is produced in response to injury and serves a detrimental role in lung fibrosis. In this study, we aimed to explore the ADO signaling in the progression of lung fibrosis induced by MWCNT. RESULTS: MWCNT exposure markedly increased A2B adenosine receptor (A2BAR) expression in the lungs and ADO level in bronchoalveolar lavage fluid, combined with elevation of blood neutrophils, collagen fiber deposition, and activation of myeloperoxidase (MPO) activity in the lungs. Furthermore, MWCNT exposure elicited an activation of transforming growth factor (TGF)-ß1 and follistatin-like 1 (Fstl1), leading to fibroblasts recruitment and differentiation into myofibroblasts in the lungs in an A2BAR-dependent manner. Conversely, treatment of the selective A2BAR antagonist CVT-6883 exhibited a significant reduction in levels of fibrosis mediators and efficiently decreased cytotoxicity and inflammatory in MWCNT treated mice. CONCLUSION: Our results reveal that accumulation of extracellular ADO promotes the process of the fibroblast-to-myofibroblast transition via A2BAR/TGF-ß1/Fstl1 signaling in MWCNT-induced lung fibrosis.


Assuntos
Adenosina/metabolismo , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/metabolismo , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Relacionadas à Folistatina/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/química , Peroxidase/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Purinas/farmacologia , Pirazóis/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
13.
Exp Lung Res ; 43(1): 38-48, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28266889

RESUMO

Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. MATERIALS AND METHODS: Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. RESULTS: Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. CONCLUSION: Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury.


Assuntos
Pneumonia em Organização Criptogênica/prevenção & controle , Lesão Pulmonar/metabolismo , Receptor A2B de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Adenosina/farmacologia , Animais , Isquemia , RNA Mensageiro/análise , Ratos , Receptor A2A de Adenosina/análise , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/análise , Receptor A2B de Adenosina/genética
14.
Biochem J ; 473(14): 2179-86, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208173

RESUMO

A2BAR (A2B adenosine receptor) has been implicated in several physiological conditions, such as allergic or inflammatory disorders, vasodilation, cell growth and epithelial electrolyte secretion. For mediating the protein-protein interactions of A2BAR, the receptor's C-terminus is recognized to be crucial. In the present study, we unexpectedly found that two point mutations in the A2BAR C-terminus (F297A and R298A) drastically impaired the expression of A2BAR protein by accelerating its degradation. Thus we tested the hypothesis that these two point mutations disrupt A2BAR's interaction with a protein essential for A2BAR stability. Our results show that both mutations disrupted the interaction of A2BAR with actinin-1, an actin-associated protein. Furthermore, actinin-1 binding stabilized the global and cell-surface expression of A2BAR. By contrast, actinin-4, another non-muscle actinin isoform, did not bind to A2BAR. Thus our findings reveal a previously unidentified regulatory mechanism of A2BAR abundance.


Assuntos
Actinina/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Mutação Puntual/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Receptor A2B de Adenosina/química , Receptor A2B de Adenosina/genética , Transdução de Sinais
15.
Purinergic Signal ; 12(2): 313-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26969588

RESUMO

The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs.


Assuntos
Cisteína/química , Modelos Moleculares , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Animais , Células CHO , Cricetulus , Cisteína/metabolismo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Humanos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida
16.
Am J Physiol Cell Physiol ; 309(12): C823-34, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468208

RESUMO

Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated.


Assuntos
Ácido Gástrico/metabolismo , Células Parietais Gástricas/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Feminino , Citometria de Fluxo , Imunofluorescência , Masculino , Microscopia Confocal , Coelhos
17.
Biochim Biophys Acta ; 1843(12): 2957-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241343

RESUMO

The A2B adenosine receptor (A2B AR), activated in response to high levels of endogenous adenosine, is the major AR subtype involved in mesenchymal stem cell (MSC) differentiation to osteoblasts and bone formation. For this reason, targeting of A2B AR with selective allosteric modulators may represent a promising pharmacological approach to the treatment of bone diseases. Herein, we report the characterization of a 3-keto-indole derivative, 2-(1-benzyl-1H-indol-3-yl)-2-oxo-N-phenylacetamide (KI-7), as A2B AR positive allosteric modulator in MSCs, demonstrating that this compound is able to potentiate the effects of either adenosine and synthetic orthosteric A2B AR agonists in mediating osteoblast differentiation in vitro. In detail, we observed that MSC treatment with KI-7 determined an increase in the expression of osteoblast-related genes (Runx2 and osterix) and osteoblast marker proteins (phosphatase alkaline and osteocalcin), associated with a stimulation of osteoblast mineralization. In the early phase of differentiation programme, KI-7 significantly potentiated physiological and A2B AR agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that a positive allosteric modulation of A2B AR not only favours MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair.

18.
Biochim Biophys Acta ; 1840(3): 1194-203, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361612

RESUMO

BACKGROUND: Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target. METHODS: We evaluated seven 1-benzyl-3-ketoindole derivatives (7-9) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs. RESULTS: The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy. CONCLUSIONS: A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR. GENERAL SIGNIFICANCE: The 1-benzyl-3-ketoindole derivatives 7-9 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.


Assuntos
Receptor A2B de Adenosina/efeitos dos fármacos , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Regulação Alostérica , AMP Cíclico/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Receptor A2B de Adenosina/metabolismo
19.
Biochem Cell Biol ; 93(4): 321-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25877700

RESUMO

A2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively. MTT assay was used to study the cell proliferation effect of A2bAR agonist (NECA). Detection of apoptosis was conducted using annexin V-FITC/PI staining, caspase-3 activation assay, and the expression of Bax and Bcl-2 proteins analysis. The mitochondrial membrane potential (ΔΨM) was analyzed by employing JC-1 prob. The mRNA and protein expression levels of A2bAR in ovarian cancer cells were detected. NECA significantly reduced cell viability in a dose-dependent manner in OVCAR-3 and Caov-4 cell lines. The growth inhibition effect of NECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by NECA were also observed. These findings demonstrated that NECA induces apoptosis via the mitochondrial signaling pathway. Thus, A2bAR agonists may be a potential agent for induction of apoptosis in ovarian cancer cells.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Caspase 3/metabolismo , Proliferação de Células , Neoplasias Ovarianas/patologia , Receptor A2B de Adenosina/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Receptor A2B de Adenosina/metabolismo
20.
FASEB J ; 28(8): 3633-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24803544

RESUMO

Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.


Assuntos
Anemia Falciforme/complicações , Hipóxia Celular/fisiologia , Miócitos de Músculo Liso/fisiologia , Pênis/citologia , Priapismo/fisiopatologia , Precursores de Proteínas/fisiologia , Proteínas e Peptídeos Salivares/fisiologia , Anemia Falciforme/metabolismo , Animais , Células Cultivadas , Cobalto/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Pênis/crescimento & desenvolvimento , Priapismo/etiologia , Precursores de Proteínas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor A2B de Adenosina/biossíntese , Receptor A2B de Adenosina/genética , Proteínas e Peptídeos Salivares/biossíntese , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA