RESUMO
BACKGROUND: Despite standard treatments including chemoradiotherapy with temozolomide (TMZ) (STUPP protocol), the prognosis of glioblastoma patients remains poor. AGuIX nanoparticles have a high radiosensitizing potential, a selective and long-lasting accumulation in tumors and a rapid renal elimination. Their therapeutic effect has been proven in vivo on several tumor models, including glioblastoma with a potential synergetic effect when combined with TMZ based chemoradiotherapy, and they are currently evaluated in 4 ongoing Phase Ib and II clinical trials in 4 indications (brain metastases, lung, pancreatic and cervix cancers) (> 100 patients received AGuIX). Thus, they could offer new perspectives for patients with newly diagnosed glioblastoma. The aim of this study is to determine the recommended dose of AGuIX as a radiosensitizer in combination with radiotherapy and TMZ during the concurrent radio-chemotherapy period for phase II (RP2D) and to estimate the efficacy of the combination. METHODS: NANO-GBM is a multicenter, phase I/II, randomized, open-label, non-comparative, therapeutic trial. According to a dose escalation scheme driven by a TITE-CRM design, 3 dose levels of AGuIX (50, 75 and 100 mg/kg) will be tested in phase I added to standard concomitant radio-chemotherapy. Patients with grade IV glioblastoma, not operated or partially operated, with a KPS ≥ 70% will be eligible for the study. The primary endpoints are i) for phase I, the RP2D of AGuIX, with DLT defined as any grade 3-4 NCI-CTCAE toxicity and ii) for phase II, the 6-month progression-free survival rate. The pharmacokinetics, distribution of nanoparticles, tolerance of the combination, neurological status, overall survival (median, 6-month and 12-month rates), response to treatment, and progression-free survival (median and 12-month rates) will be assessed as secondary objectives. Maximum sixty-six patients are expected to be recruited in the study from 6 sites. DISCUSSION: The use of AGuIX nanoparticles could allow to overpass the radioresistance to the reference treatment of newly diagnosed glioblastomas that have the poorest prognosis (incomplete resection or biopsy only). TRIAL REGISTRATION: Clinicaltrials.gov: NCT04881032 , registered on April 30, 2021. Identifier with the French National Agency for the Safety of Medicines and Health Products (ANSM): N°Eudra CT 2020-004552-15. PROTOCOL: version 3, 23 May 2022.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Feminino , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Antineoplásicos Alquilantes/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias Encefálicas/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase I como AssuntoRESUMO
In the frame of radiotherapy treatment of cancer, radioresistance remains a major issue that still needs solutions to be overcome. To effectively improve the radiosensitivity of tumors and reduce the damage of radiation to neighboring normal tissues, radiosensitizers have been given increasing attention in recent years. As nanoparticles based on the metal element gadolinium, AGuIX nanoparticles have been shown to increase the radiosensitivity of cancers. Although it is a rare nanomaterial that has entered preclinical trials, the unclear biological mechanism hinders its further clinical application. In this study, we demonstrated the effectiveness of AGuIX nanoparticles in the radiosensitization of triple-negative breast cancer. We found that AGuIX nanoparticles increased the level of DNA damage by compromising the homologous recombination repair pathway instead of the non-homologous end joining pathway. Moreover, the results showed that AGuIX nanoparticles induced apoptosis, but the degree of apoptosis ability was very low, which cannot fully explain their strong radiosensitizing effect. Ferroptosis, the other mode of cell death, was also discovered to play a significant role in radiation sensitization, and AGuIX nanoparticles may regulate the anti-ferroptosis system by inhibiting the NRF2-GSH-GPX4 signaling pathway.
Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Gadolínio , Humanos , Fator 2 Relacionado a NF-E2 , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Radiação Ionizante , Transdução de SinaisRESUMO
Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP's distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs.
Assuntos
Epitélio/efeitos dos fármacos , Gadolínio/uso terapêutico , Nanopartículas/uso terapêutico , Sistema Respiratório/efeitos dos fármacos , Células A549/patologia , Animais , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Sistemas de Liberação de Medicamentos/métodos , Gadolínio/química , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/químicaRESUMO
The ultrasmall nanoparticle AGuIX is a versatile platform that tolerates a range of chemical diversity for theranostic applications. Our previous work showed that AGuIX clears rapidly from normal tissues, while durably accumulating within the tumor microenvironment. On this basis, AGuIX was used to detect tumor tissue with Gd(3+) enhanced MRI and can sensitize tumors to radiation therapy. As we begin the translation of AGuIX, we appreciated that coupling AGuIX to a long-lived radioisotope would help to more completely measure the magnitude and duration of its retention within the tumor microenvironment. Therefore, we developed (89)Zr-DFO-AGuIX. AGuIX was coupled to DFO and then to (89)Zr in â¼99% radiochemical yield. Stability studies showed that (89)Zr-DFO-AGuIX did not dissociate after 72 h. In animals bearing U87MG xenografts, it was detectable at levels above background for 72 h. Lastly, (89)Zr-DFO-AGuIX did not accumulate in inflammatory abscesses in vivo, highlighting its specificity for well vascularized tumors.
Assuntos
Nanopartículas/química , Compostos Radiofarmacêuticos/química , Zircônio/química , Animais , Marcação por Isótopo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodosRESUMO
Background: In glioblastoma (GBM), tumor progression occurs mainly within the irradiated tumor volume. To address this challenge, a radiosensitization strategy with intravenous gadolinium-based theranostic nanoparticles (AGuIX) is being explored in the NANO-GBM phase1b/2R trial (NCT04881032). Here, we present the results of the phase 1b part, which is the first-in-human use of these nanoparticles with radiotherapy and chemotherapy for the treatment of newly diagnosed GBM. Material and Methods: Eligible patients were aged 18 to 75 years with newly diagnosed and histologically confirmed GBM, with incomplete resection (biopsy or partial surgery). The phase 1b part was a dose escalation approach (Time-to-event Continuous Reassessment Method) with three dose levels: 50, 75, and 100 mg/kg. Patients were treated with RT (60 Gy), and concomitant and adjuvant TMZ, and 4 injections of AGuIX (D-3/-7, D1, D8, and D15). Dose-limiting-toxicity (DLT) was defined as any grade 3-4 adverse event (CTCAE v5.0), excluding alopecia, nausea, and rapidly controlled vomiting. Pharmacokinetic (PK), and biodistribution based on MRI were evaluated. Results: Between March 2022 and March 2023, eight patients were enrolled: 1 at 50 mg/kg, 1 at 75 mg/kg, and 6 at 100 mg/kg. All patients received the four AGuIX injections. Only one patient experienced a DLT (at 100 mg/kg): a grade 3 lymphopenia (related to TMZ). The RP2D of AGuIX was determined as 100 mg/kg. AGuIX mean AUC increased with dose. Regions of GBM with moderate (36-123 µM), and high (123-291 µM) or very high (>291 µM) AGuIX concentrations accounted in average for 38.7 and 26.8 %, respectively. Conclusion: These results confirm the lack of AGuIX-related toxicity and the widespread dispersion of nanoparticles throughout GBM. This supports progression to the randomized phase 2 part, utilizing an RP2D of AGuIX of 100 mg/kg (4 injections).
RESUMO
Photodynamic therapy is an accepted therapy cancer treatment. Its advantages encourage researchers to delve deeper. The use of nanoparticles in PDT has several advantages including the passive targeting of cancer cells. The aim of this article is to evaluate the effectiveness of AGuIX nanoparticles (activation and guiding of irradiation by X-ray) in the presence or absence of a photosensitizer, Photofrin, under illumination of 630 nm or under X-ray irradiation. The goal is to improve local tumor control by combining PDT with low-dose-X-ray-activated NPs in the treatment of locally advanced metastatic lung cancer. The study of the energy transfer, which occurs after excitation of Gd/Tb chelated in AGuIX in the presence of Photofrin, was carried out. We could observe the formation of singlet oxygen after the light or X-ray excitation of Gd and Tb that was not observed for AGuIX or Photofrin alone, proving that it is possible to realize energy transfer between both compounds.
RESUMO
Radiotherapy is a major therapeutic strategy for cancer treatment. Despite many technology advances in the last two decades, local control remains often suboptimal, especially in locally advanced tumours, which are often hypoxic, and radioresistant. In addition, irradiation of surrounding tissues and organs at risk usually precludes further dose escalation to minimize acute and late toxicities. Radiosensitizing agents such as chemotherapies targeting the DNA repair, or targeted monoclonal antibodies (cetuximab) have been shown to improve local control in many tumour types. More recently, radioenhancers have emerged as a new way to overcome the limitations of radiation. Here, we review the state of the art in this field and will focus on the past and ongoing clinical trials with the nanoparticles NBTXR3 and AGuIX®.
RESUMO
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone.
RESUMO
Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from 68Ga positrons is involved in nanoscintillator and photosensitizer activation, the cytotoxic effect obtained by PDT remains controversial. Herein, we tested whether free 68Ga could substitute X-rays of X-PDT to obtain a cytotoxic phototherapeutic effect. Results were compared with those obtained with AGuIX@Gd-P1 nanoparticles. We showed, by Monte Carlo simulations, the contribution of Tb scintillation in P1 activation by an energy transfer between Tb and P1 after Cerenkov radiation, compared to the Gd-based nanoparticles. We confirmed the involvement of the type II PDT reaction during 68Ga-mediated Cerenkov luminescence, id est, the transfer of photon to AGuIX@Tb-P1 which, in turn, generated P1-mediated singlet oxygen. The effect of 68Ga on cell survival was studied by clonogenic assays using human glioblastoma U-251 MG cells. Exposure of pre-treated cells with AGuIX@Tb-P1 to 68Ga resulted in the decrease in cell clone formation, unlike AGuIX@Gd-P1. We conclude that CR-PDT could be an alternative of X-PDT.
RESUMO
Purpose: Chondrosarcomas (CHSs), which represent 20% of primary bone tumors in adults, are mostly resistant to radio- and chemotherapy. It is therefore essential that new therapeutic approaches, targeted to the tumour, be developed to improve the prognosis of patients. The effectiveness, as a radiosensitizing agent, of gadolinium oxide nanoparticles (GdoNP, AGuIX®) nanoparticles in CHS was evaluated in vitro, in spheroid CHS models allowing to reproduce cell-cell extracellular matrix interactions, and, in vivo, in a nude mouse model with heterotopic tumour xenograft. Methods: Spheroids from SW1353 and HEMC-SS cells were characterized by confocal microscopy with or without GdoNP treatment. Real-time microscopy enabled quantification of cell viability, cell migration and invasion. In vivo, the efficacy of the association of GdoNP combined with a single (4Gy) or fractionated (4x1Gy) irradiation was evaluated in HEMC-SS tumor-bearing mice by monitoring tumor growth, mouse survival and gene expression profile. Results: The expression of proteoglycans in the extra-cellular matrix (ECM) of spheroids demonstrated the relevance of the 3-D model. The combination of GdoNP with single or fractionated irradiation increased the lethal effects of irradiation on 2-D- and 3-D-cultured cells. In vivo, a single or a fractionated dose of 4 Gy associated with IT or IV injection of GdoNP decreased tumor growth significantly. Only IT injection increased mice survival. Unexpectedly, the radiosensitizing effect of GdoNP was associated, in vitro, with a significant decrease in invasion-migration capacities and, in vivo, with the decreased expression of PTX3, a protein involved in the epithelial-to-mesenchymal transition process, suggesting a potential impact of GdoNP on metastasis formation. Conclusion: These results provide the first proof of concept of the radiosensitizing effect of GdoNP in CHSs and opened the way for a multicentre, randomized Phase 2 trial evaluating the association of GdoNP with radiotherapy for the therapeutic management of patients with symptomatic inoperable musculoskeletal tumor lesions.
Assuntos
Neoplasias Ósseas , Condrossarcoma , Nanopartículas , Radiossensibilizantes , Camundongos , Humanos , Animais , Radiossensibilizantes/farmacologia , Modelos Animais de Doenças , Condrossarcoma/radioterapia , Linhagem Celular TumoralRESUMO
BACKGROUND AND PURPOSE: Brain metastasis impacts greatly on patients' quality of life and survival. The phase I NANO-RAD trial assessed the safety and maximum tolerated dose of systemic administration of a novel gadolinium-based nanoparticle, AGuIX, in combination with whole brain radiotherapy in patients with multiple brain metastases not suitable for stereotactic radiotherapy. MATERIALS AND METHODS: Patients with measurable brain metastases received escalating doses of AGuIX nanoparticles (15, 30, 50, 75, or 100 mg/kg intravenously) on the day of initiation of WBRT (30 Gy in 10 fractions) in 5 cohorts of 3 patients each. Toxicity was assessed using NCI Common Terminology Criteria for Adverse Events v4.03. RESULTS: Fifteen patients with 354 metastases were included. No dose-limiting toxic effects were observed up to AGuIX 100 mg/kg. Plasma elimination half-life of AGuIX was similar for all groups (mean 1.3 h; range 0.8-3 h). Efficient targeting of metastases (T1 MRI enhancement, tumor selectivity) and persistence of AGuIX contrast enhancement were observed in metastases from patients with primary melanoma, lung, breast, and colon cancers. The concentration of AGuIX in metastases after administration was proportional to the injected dose. Thirteen of 14 evaluable patients had a clinical benefit, with either stabilization or reduction of tumor volume. MRI analysis showed significant correlation between contrast enhancement and tumor response, thus supporting a radiosensitizing effect. CONCLUSION: Combining AGuIX with radiotherapy for patients with brain metastases is safe and feasible. AGuIX specifically targets brain metastases and is retained within tumors for up to 1 week; ongoing phase II studies will more definitively assess efficacy.
Assuntos
Neoplasias Encefálicas , Nanopartículas , Radiossensibilizantes , Neoplasias Encefálicas/radioterapia , Humanos , Medicina de Precisão , Qualidade de VidaRESUMO
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AguIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.
RESUMO
Auger cascades generated in high atomic number nanoparticles (NPs) following ionization were considered a potential mechanism for NP radiosensitization. In this work, we investigated the microdosimetric consequences of the Auger cascades using the theory of dual radiation action (TDRA), and we propose the novel Bomb model as a general framework for describing NP-related radiosensitization. When triggered by an ionization event, the Bomb model considers the NPs that are close to a radiation sensitive cellular target, generates dense secondary electrons and kills the cells according to a probability distribution, acting like a "bomb." TDRA plus a distance model were used as the theoretical basis for calculating the change in α of the linear-quadratic survival model and the relative biological effectiveness (RBE). We calculated these quantities for SQ20B and Hela human cancer cells under 250 kVp X-ray irradiation with the presence of gadolinium-based NPs (AGuIXTM), and 220 kVp X-ray irradiation with the presence of 50 nm gold NPs (AuNPs), respectively, and compared with existing experimental data. Geant4-based Monte Carlo (MC) simulations were used to (1) generate the electron spectrum and the phase space data of photons entering the NPs and (2) calculate the proximity functions and other related parameters for the TDRA and the Bomb model. The Auger cascade electrons had a greater proximity function than photoelectric and Compton electrons in water by up to 30%, but the resulting increases in α were smaller than those derived from experimental data. The calculated RBEs cannot explain the experimental findings. The relative increase in α predicted by TDRA was lower than the experimental result by a factor of at least 45 for SQ20B cells with AGuIX under 250 kVp X-ray irradiation, and at least four for Hela cells with AuNPs under 220 kVp X-ray irradiation. The application of the Bomb model to Hela cells with AuNPs under 220 kVp X-ray irradiation indicated that a single ionization event for NPs caused by higher energy photons has a higher probability of killing a cell. NPs that are closer to the cell nucleus are more effective for radiosensitization. Microdosimetric calculations of the RBE for cell death of the Auger electron cascade cannot explain the experimentally observed radiosensitization by AGuIX or AuNP, while the proposed Bomb model is a potential candidate for describing NP-related radiosensitization at low NP concentrations.
RESUMO
Gadolinium-based radiosensitizing AGuIX nanoparticles (AGuIX) currently tested two phase 2 clinical trials in association with radiotherapy for the treatment of brain metastases. Here, excitatory/inhibitory neurotransmission was assessed in rat cortex nerve terminals in the presence of AGuIX and their constituents (DOTAGA and DOTAGA/Gd3+) at concentrations used for medical treatment, and those 5-24 times higher. The ambient level, transporter-mediated, tonic and exocytotic release of L-[14C]glutamate and [3H]GABA, the membrane potential of nerve terminals were not changed in the presence of AGuIX at concentrations used for medical treatment ([Gd3+] = 0.25 mM, corresponding to 0.25 g.L-1), and DOTAGA (0.25 mM) and DOTAGA/Gd3+ (0.25 mM/0.01 mM). Difference between AGuIX and the precursors was uncovered, when their concentrations were increased. AGuIX (1.25-6 mM) did not change any transport characteristics of L-[14C]glutamate and [3H]GABA, whereas, DOTAGA (1.25-6 mM) affected the membrane potential, ambient level, and exocytotic release of L-[14C]glutamate and [3H]GABA. Gd3+ did not mask, but even enhanced above effects of DOTAGA. Therefore, AGuIX did not influence glutamate- and GABA-ergic neurotransmission at the presynaptic site. In contrast, DOTAGA and mixture DOTAGA/Gd3+ significantly affected synaptic neurotransmission at high concentrations. AGuIX own structure that overcomes neurotoxic features of their constituents.
Assuntos
Neoplasias Encefálicas/secundário , Córtex Cerebral/metabolismo , Gadolínio/farmacologia , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Córtex Cerebral/patologia , Relação Dose-Resposta a Droga , Exocitose , Gadolínio/administração & dosagem , Masculino , Nanopartículas/administração & dosagem , Radiossensibilizantes , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
Interest of tumor targeting through EPR effect is still controversial due to intrinsic low targeting efficacy and rare translation to human cancers. Moreover, due to different reasons, it has generally been described for relatively large nanoparticles (NPs) (hydrodynamic diameter > 10 nm). In this review EPR effect will be discussed for ultrasmall NPs using the example of the AGuIX® NP (Activation and Guiding of Irradiation by X-ray) recently translated in clinic. AGuIX® NP is a 4 ± 2 nm hydrodynamic diameter polysiloxane based NP. Since AGuIX® NP biodistribution is monitored by magnetic resonance imaging (MRI) and its activation is triggered by irradiation upon X-rays, this NP is well adapted for a theranostic approach of radiotherapy cancer treatment. Here we show that AGuIX® NP is particularly well suited to benefit from EPR-mediated tumor targeting thanks to an ultrasmall size and efficacy under irradiation at small dose. Indeed, intravenously-injected AGuIX® NP into rodent cancer models passively reached the tumor and revealed no toxicity, favoured by renal clearance. Moreover, translation of AGuIX® NP accumulation and retention into humans carrying brain metastases was validated during a first-in-man phase Ib trial taking advantage of easy biodistribution monitoring by MRI.
Assuntos
Gadolínio , Nanopartículas/química , Neoplasias , Nanomedicina Teranóstica , Animais , Quelantes/química , Gadolínio/farmacocinética , Gadolínio/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Tamanho da Partícula , Siloxanas/química , Distribuição TecidualRESUMO
Radiotherapy is the main treatment for cancer patients. A major concern in radiotherapy is the radiation resistance of some tumors, such as human nonsmall cell lung cancer. However, the radiation dose delivered to the tumors is often limited by the possibility of collateral damage to surrounding healthy tissues. A new and efficient gadolinium-based nanoparticle, AGuIX, has recently been developed for magnetic resonance imaging-guided radiotherapy and has been proven to act as an efficient radiosensitizer. The amplified radiation effects of AGuIX nanoparticles appear to be due to the emission of low-energy photoelectrons and Auger electron interactions. We demonstrated that AGuIX nanoparticles exacerbated radiation-induced DNA double-strand break damage and reduced DNA repair in the H1299 nonsmall cell lung cancer cell line. Furthermore, we observed a significant improvement in tumor cell damage and growth suppression, under radiation therapy, with the AGuIX nanoparticles in a H1299 mouse xenograft model. This study paves the way for research into the radiosensitization mechanism of AGuIX nanoparticles and provides a scientific basis for the use of AGuIX nanoparticles as radiosensitizing drugs.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Gadolínio/química , Gadolínio/efeitos da radiação , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Camundongos Nus , Radiação Ionizante , Radiossensibilizantes/química , Radiossensibilizantes/efeitos da radiação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). METHODS: The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. RESULTS: The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 µM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. CONCLUSION: Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
Assuntos
Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Terapia de Alvo Molecular , Nanopartículas/química , Neuropilina-1/metabolismo , Fotoquimioterapia , Nanomedicina Teranóstica/métodos , Animais , Células Endoteliais/metabolismo , Gadolínio/química , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metástase Neoplásica , Porfirinas/química , Medicina de Precisão , Ratos , Distribuição TecidualRESUMO
BACKGROUND: Gadolinium nanoparticles (Gd-NP) combined with radiotherapy are investigated for radiation dose enhancement in radiotherapy treatment. Indeed, NPs concentrated in a tumor could enhance its radiosensitization. The noninvasive quantification of the NP concentration is a crucial task for radiotherapy treatment planning and post-treatment monitoring as it will determine the absorbed dose. In this work, we evaluate the achievable accuracy of in vivo SPECT-based Gd-NP organ concentration on rats. METHODS: Gd-NPs were labeled with 111In radionuclide. SPECT images have been acquired on phantom and rats, with various Gd-NP injections. Images have been calibrated and corrected for attenuation, scatter, and partial volume effect. Image-based estimations were compared to both inductively coupled plasma mass spectrometer (ICP-MS) for Gd concentration and ex vivo organ activity measured by gamma counter. RESULTS: The accuracy for the Gd mass measurements in organ was within 10% for activity above 2 MBq or concentrations above â¼ 3-4 MBq/mL. The Gd mass calculation is based on In-Gd coefficient which defines the Gd detection limit. It was found to be in a range from 2 mg/MBq to 2 µg/MBq depending on the proportions of initial injection preparations. Measurement was also impaired by free Gd and 111In formed during metabolic processes. CONCLUSIONS: Even if SPECT image quantification remains challenging mostly due to partial volume effect, this study shows that it has potential for the Gd mass measurements in organ. The main limitation of the method is its indirectness, and a special care should be taken if the organ of interest could be influenced by different clearance rate of free Gd and 111In formed by metabolic processes. We also discuss the practical aspects, potential, and limitations of Gd-NP in vivo image quantification with a SPECT.
RESUMO
Nanomedicine has undergone significant development since the 2000s and it is only very recently that two metallic nanoparticles have emerged in clinical trials. The mechanism of these radiosensitizing agents is based on the presence of atoms with a high atomic number (Z) allowing a higher dose deposition into the tumor during irradiation. The first nanoparticle used in humans is NBTXR3, composed of hafnium (Z=79), with intratumor injection for the treatment of sarcoma. Another gadolinium-based nanoparticle (Z=64), AGuIX, has been used for intravenous injection in the treatment of brain metastases. The preliminary results are promising in terms of feasibility, safety and efficacy, as evidenced by the significant number of ongoing clinical trials. The upcoming challenges for the development of nanoparticles will be the targeting of cancer cells, their biodistribution into the body, their eventual toxicity and their industrial production. In the coming years, modalities of administration and optimal combinations with radiotherapy should be defined in connection with fundamental research.
Assuntos
Nanomedicina , Nanopartículas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Adenocarcinoma/radioterapia , Adenocarcinoma/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Ensaios Clínicos Fase I como Assunto , Gadolínio/uso terapêutico , Ouro/uso terapêutico , Háfnio/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Nanopartículas/efeitos adversos , Radiossensibilizantes/efeitos adversos , Sarcoma/radioterapiaRESUMO
Background: Radiation therapy (RT) of hepatocellular carcinoma (HCC) is limited by low tolerance of the liver to radiation, whereas radiosensitizers are effective in reducing the required radiation dose. Multimodality gadolinium-based nanoparticles (AGuIX) are small and have enhanced permeability and retention effects; thus, they are very suitable for radiation sensitizer HCC RT. Here, we evaluated the potential value of AGuIX for theranostic MRI-radiosensitization in HCC. Methods: The radiosensitization effects of AGuIX were evaluated via in vitro and in vivo experiments. Tumor growth, apoptosis imaging, and immunohistochemistry were performed to verify the antitumor effects of RT with AGuIX. Results: In vitro evaluation of the efficacy of radiosensitivity of the AGuIX demonstrated that the presence of AGuIX significantly decreased HepG2 cell survival when combined with an X-ray beam. In vivo MRI imaging showed the ratio of tumor/liver concentration of the AGuIX was the highest 1 h after intravenous injection. For antitumor effects, we found that the tumor size decreased by RT-only and RT with AGuIX. The antitumor effects were more effective with high-dose AGuIX-mediated RT. Apoptosis imaging and immunohistochemistry both demonstrated that the degree of the cell apoptosis was highest with a high dose of AGuIX-mediated RT. Conclusions: This study provides compelling data that AGuIX can facilitate theranostic MRI-radiosensitization in HCC.