Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712979

RESUMO

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Assuntos
Angiotensina II , Apoptose , Autofagia , Flavonoides , Miócitos Cardíacos , Transdução de Sinais , Animais , Masculino , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Flavonoides/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
J Biochem Mol Toxicol ; 38(2): e23641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348709

RESUMO

Cyclophosphamide (CTX) is a common anticancer chemotherapy drug, and myelosuppression is the most common serious side effect. Asperuloside (ASP), the active component of Hedyotis diffusa Willd., may have the effect of ameliorating chemotherapy-induced myelosuppression. This study aimed to explore the effect and possible mechanism of ASP on CTX-induced myelosuppression. Male SPF C57BL/6 mice were randomly divided into five groups: control group, CTX (25 mg/kg) group, CTX + granulocyte-macrophage-colony stimulating factor (GM-CSF) (5 µg/kg) group, CTX + high-dose ASP (50 mg/kg) group and CTX + low-dose ASP (25 mg/kg) group, with six mice in each group. The body weight of mice was monitored every other day, the hematopoietic progenitor cell colony number was measured by colony forming unit, and the relevant blood indicators were detected. Femoral bone marrow was observed by hematoxylin-eosin, C-kit expression was detected by immunohistochemistry, and autophagy and adenine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway protein expressions were detected by immunohistochemistry and western blotting (WB). Then the AMPK inhibitor dorsomorphin was used to interfere with AMPK/mTOR pathway. Results showed that ASP significantly increased the body weight of CTX-induced mice, increased the number of hematopoietic progenitor cells, the expression of white blood cells, red blood cells, platelets, GM-CSF, thrombopoietin and erythropoietin in blood, and the expression of C-kit in bone marrow. In addition, ASP further promoted the expression of Beclin1 and LC-3II/I induced by CTX, and regulated the protein expressions in the AMPK/mTOR pathway. The use of dorsomorphin inhibited the alleviation effect of ASP on CTX-induced myelosuppression and the promotion effect of ASP on autophagy. In conclusion, ASP alleviated CTX-induced myelosuppression by promoting AMPK/mTOR pathway-mediated autophagy.


Assuntos
Antineoplásicos , Monoterpenos Ciclopentânicos , Glucosídeos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Piranos , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP , Autofagia , Peso Corporal , Ciclofosfamida/efeitos adversos , Ciclofosfamida/toxicidade , Mamíferos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR
3.
Neurobiol Dis ; 186: 106273, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648036

RESUMO

Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.


Assuntos
Microglia , Canais de Cátion TRPM , Humanos , Proteínas Quinases Ativadas por AMP , Doenças Neuroinflamatórias , Canais de Cátion TRPM/genética , Serina-Treonina Quinases TOR , Autofagia , Canais de Cálcio
4.
J Transl Med ; 21(1): 575, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633909

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS: Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS: Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS: Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.


Assuntos
Ferroptose , Hiperplasia Prostática , Idoso , Animais , Humanos , Masculino , Ratos , Proteínas Quinases Ativadas por AMP , Apoptose , Glutationa Peroxidase , Hiperplasia , Sistema de Sinalização das MAP Quinases , Mitocôndrias , Próstata , Serina-Treonina Quinases TOR
5.
FASEB J ; 36(10): e22531, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063130

RESUMO

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and will lead to visual impairment. We aim to explore the effects and mechanisms of wnt inhibitory factor 1 (WIF1) in the progression of DR. To establish DR in vitro and in vivo, human retinal pigment epithelium (RPE) cell line ARPE-19 was treated with high-glucose (HG) and diabetic mice models were induced by streptozotocin (STZ), respectively. Different dose of recombinant WIF1 protein was used to treat DR. qRT-PCR and western blotting results demonstrated that WIF1 was downregulated, while VEGFA was upregulated in HG-induced ARPE-19 cells. WIF1 overexpression promoted cell migration. The ARPE-19 cells culture medium treated with WIF1 inhibited retinal endothelial cell tube formation and downregulated VEGFA expression. Moreover, WIF1 decreased the levels of ROS and MDA, while increasing the activity of SOD and GPX. WIF1 increased the ΔΨm in the mitochondria and downregulated the expression of mitochondrial autophagy-related proteins including Parkin, Pink1, LC3-II/LC3-I ratio, cleaved caspase 3, and cyt-c, which ameliorated mitochondrial dysfunction. The in vivo studies further demonstrated the consistent effects of WIF1 in STZ-induced mice. Taken together, WIF1 ameliorated mitochondrial dysfunction in DR by downregulating the AMPK/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Mol Cell Probes ; 71: 101918, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454876

RESUMO

BACKGROUND: COTE-1 has been found to promote the proliferation and invasion of non-small cell lung cancer. However, the mechanism of COTE-1 in SCLC is still unclear. Exploring the role of COTE-1 in SCLC is expected to provide a potential target for the prognosis and treatment of SCLC. METHODS: The expression of COTE-1 and ki-67 was detected by immunohistochemical staining. PCR detected COTE-1 expression level. Cell proliferation activity was detected by CCK8 assay. A wound healing test detected cell migrative ability. Transwell invasion assay detected cell invasive ability. The numbers of autophagosomes were observed by transmission electron microscopy. WB detected the expression levels of autophagy-related proteins and AMPK/mTOR pathway-related proteins. The effect of COTE-1 expression level on the proliferation of SCLC tumor tissues was investigated by establishing a mouse SCLC xenograft tumor model. RESULTS: The expression of COTE-1 in SCLC tissues and cells was higher than that in normal tissues and cells. In SCLC cells with high COTE-1 expression, the expression level of autophagy proteins was notably increased, the number of intracellular autophagosomes increased, and the proliferative activity, migration and invasion abilities were enhanced. COTE-1 promotes autophagy, proliferation, and invasion of SCLC cells under nutrient deprivation by activating the AMPK/mTOR signaling pathway. Activation of autophagy by COTE-1 promotes the proliferation and development of xenograft tumors in a mouse model of SCLC. CONCLUSION: COTE-1 promotes the proliferation, migration and invasion of small cell lung cancer by mediating autophagy based on the AMPK/mTOR pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
7.
J Gastroenterol Hepatol ; 38(11): 1868-1876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438882

RESUMO

Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, initiating adipogenesis. In addition, acetyl-CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc-51-like autophagy-activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element-binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/patologia , Serina-Treonina Quinases TOR/metabolismo , Obesidade , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
8.
Gynecol Endocrinol ; 39(1): 2244600, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37544927

RESUMO

Objective: Polycystic ovarian syndrome (PCOS) is a prevalent gynecologic disorder, often associated with abnormal follicular development. Cangfu Daotan decoction (CFD) is a traditional Chinese medicine formula that is effective in alleviating PCOS clinically, but the specific mechanism remains unclear. Forkhead box K1 (FOXK1) is associated with cellular function. This study aimed to explore the effects of CFD and FOXK1 on PCOS.Methods: High-fat diet and letrozole were combined to establish PCOS rat models. Next, primary GCs were extracted from those PCOS rats. Then, GC cells were transfected with si-FOXK1 or oe-FOXK1. CFD-contain serum was prepared, and experiments were conducted to investigate the regulation of FOXK1 by CFD.Results: FOXK1 was highly expressed in GCs of PCOS rats. Further investigation revealed that FOXK1 overexpression resulted in inhibition of proliferation and DNA synthesis, along with promotion of apoptosis and autophagy in GCs. Additionally, it was found that FOXK1 promoted the expressions of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway-related proteins. Interestingly, treatment with CFD reversed all the effects of FOXK1 overexpression in GCs. Conclusion: This study demonstrated that CFD exerted a protective role in PCOS by inhibiting FOXK1, which provided a research basis for the application of CFD in PCOS, and suggested that FOXK1 is a novel therapeutic target in PCOS treatment.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Apoptose , Mamíferos , Fatores de Transcrição Forkhead/genética
9.
Metab Brain Dis ; 38(3): 921-932, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517637

RESUMO

Autophagy, switched by the AMPK/mTOR signaling, has been revealed to contribute greatly to traumatic brain injury (TBI). Electroacupuncture (EA) is a promising therapeutic method for TBI, however, the underlying mechanism is still unclear. Herein, we hypothesize that the therapeutic effect of EA on TBI is associated with its inhibition on AMPK/mTOR-mediated autophagy. Sprague-Dawley rats were randomly divided into three groups: sham, TBI, and TBI + EA. TBI model was established by using an electronic controlled cortical impactor. Rats were treated with EA at 12 h after modeling, 15 min daily for 14 consecutive days. EA was applied at the acupuncture points Quchi (LI 11), Hegu (LI4), Baihui (GV20), Guanyuan (CV4), Zusanli (ST36) and Yongquan (KI1), using dense-sparse wave, at frequencies of 1 Hz, and an amplitude of 1 mA. After 3, 7 and 14 days of modeling, the modified neurological severity scale (mNSS), rota rod system, and Morris Water Maze (MWM) test showed that EA treatment promoted neurological function recovery in TBI rats. Moreover, EA treatment alleviated brain edema, pathological damage, neuronal apoptosis in TBI rats. EA improved abnormal ultrastructure, including abnormal mitochondrial morphology and increased autophagosomes, in the brain neurons of TBI rats, as measured by transmission electron microscopy, and the concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). Western blot and immunohistochemistry (IHC) assays were performed to measure the protein levels of interleukin 10 (IL-10), autophagy-related proteins and key proteins in the AMPK/mTOR signaling pathway. EA treatment increased IL-10 production, inhibited the AMPK/mTOR signaling, and inhibited excessive autophagy in TBI rats. Additionally, AMPK inhibitor Compound C treatment had similar effects to EA. Both AMPK agonist AICAR and IL-10 neutralizing antibody treatments reversed the effects of EA on the related protein levels of autophagy and the AMPK/mTOR signaling pathway, and abolished the protective effects of EA on TBI rats. In conclusion, EA treatment promoted neurological function recovery and alleviated pathological damage and neuronal apoptosis in TBI rats through inhibiting excessive autophagy via increasing IL-10 production and blocking the AMPK/mTOR signaling pathway.


Assuntos
Lesões Encefálicas Traumáticas , Eletroacupuntura , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP , Interleucina-10 , Lesões Encefálicas Traumáticas/terapia , Transdução de Sinais , Autofagia , Serina-Treonina Quinases TOR
10.
Chin J Physiol ; 66(2): 73-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082995

RESUMO

Acute kidney injury (AKI) is one of the most challenging clinical problems in kidney disease due to serious complications and high mortality rate, which can lead to acute lung injury (ALI) through inflammatory reactions and oxidative stress. Adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has been reported to be involved in the development of renal ischemia-reperfusion through autophagy and it remains unclear whether AMPK/mTOR pathway has an effect on the AKI-induced ALI. In this study, we aimed to investigate the effects of autophagy-related AMPK/mTOR signaling pathway on inflammatory factors and oxidative stress in an AKI-induced ALI model. The 48 male Sprague-Dawley rats were divided into four groups randomly: (i) sham, (ii) ischemia/reperfusion injury (IRI), (iii) IRI + rapamycin (RA), and (iv) IRI + 3-methyladenine (3-MA). Unilateral flank incisions were made and right kidneys were excised. The left kidney was subjected to 60 min of ischemia followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, blood urea nitrogen (BUN), Wet/Dry ratio, indexes of inflammation, and oxidative stress were assayed. Histological examinations were performed. The protein expression of AMPK, mTOR, LC3-II/LC3-I ratio, and Beclin-1, ULK1 was evaluated by western blotting and immunohistochemistry. Compared to the rats from the sham group, IRI rats showed significantly pulmonary damage after AKI with increased Scr, BUN, Wet/Dry ratio, indexes of inflammation, and oxidative stress. The expression of AMPK, LC3-II/LC3-I ratio, Beclin-1, and ULK1 and were increased, while p62 and mTOR were decreased. In addition, RA treatment significantly attenuated lung injury by promoting autophagy through the activation of the AMPK/mTOR pathway, and 3-MA treatment exhibited adverse effects inversely. Therefore, the activation of the AMPK/mTOR pathway after renal IRI induction could significantly attenuate kidney injury and following AKI-induced ALI by inducing autophagy, which alienates inflammation, oxidative stress, and apoptosis.


Assuntos
Injúria Renal Aguda , Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Sirolimo/farmacologia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Rim/metabolismo , Rim/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Autofagia/fisiologia , Traumatismo por Reperfusão/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Inflamação , Mamíferos/metabolismo
11.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903447

RESUMO

The widespread and excessive use of ivermectin (IVM) will not only cause serious environmental pollution, but will also affect metabolism of humans and other mammals that are exposed. IVM has the characteristics of being widely distributed and slowly metabolized, which will cause potential toxicity to the body. We focused on the metabolic pathway and mechanism of toxicity of IVM on RAW264.7 cells. Colony formation and LDH detection assay showed that IVM significantly inhibited the proliferation of and induced cytotoxicity in RAW264.7 cells. Intracellular biochemical analysis using Western blotting assay showed that LC3-B and Beclin-1 were upregulated and p62 was down-regulated. The combination of confocal fluorescence, calcein-AM/CoCl2, and fluorescence probe results showed that IVM could induce the opening of the mitochondrial membrane permeability transition pore, reduce mitochondrial content, and increase lysosome content. In addition, we focused on induction of IVM in the autophagy signal pathway. The Western blotting results showed that IVM increased expression of p-AMPK and decreased p-mTOR and p-S6K expression in protein levels, indicating that IVM activated the AMPK/mTOR signaling pathway. Therefore, IVM may inhibit cell proliferation by inducing cell cycle arrest and autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Ivermectina , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Ivermectina/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Células RAW 264.7
12.
BMC Cardiovasc Disord ; 22(1): 107, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291946

RESUMO

BACKGROUND: SERPINB1 is involved in the development of a variety of diseases. The purpose of this study was to explore the effect of SERPINB1 on acute myocardial infarction (AMI). METHODS: Serum SERPINB1 level of AMI patients was measured for receiver operating characteristic curve analysis. The AMI rat model was constructed to observe myocardial damage, and the H9C2 cell oxygen glucose deprivation (OGD) model was constructed to detect cell viability. Transthoracic echocardiography was used to assess the cardiac function. TTC staining and HE staining were used to detect pathologic changes of myocardial tissues. The apoptosis of myocardial tissues and cells were measured by TUNLE staining and flow cytometry assay. CCK-8 assay to measure cell viability. SERPINB1 expression was measured by qRT-PCR. Protein expression was measured by western blot. RESULTS: The serum SERPINB1 level was down-regulated in AMI patients. AMI modeling reduced the SERPINB1 expression level, induced inflammatory cells infiltrated, and myocardial apoptosis. OGD treatment inhibited cell viability and promoted apoptosis. The AMPK/mTOR pathway was inhibited in AMI rats and OGD-treated H9C2 cells. Overexpression of SERPINB1 reduced infarct size and myocardial apoptosis of AMI rats, inhibited apoptosis of H9C2 cells, and activated AMPK/mTOR pathway. However, AMPK inhibitor Dorsomorphin reversed the protective effect of SERPINB1 on myocardial cells. CONCLUSION: SERPINB1 overexpression relieved myocardial damage induced by AMI via AMPK/mTOR pathway.


Assuntos
MicroRNAs , Infarto do Miocárdio , Serpinas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Humanos , MicroRNAs/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ratos , Serpinas/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Exp Cell Res ; 398(1): 112387, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220257

RESUMO

Non-muscle myosin IIA (NMIIA) has been reported to be involved in the carcinogenesis and malignant progression of various human tumors. However, the role and potential mechanism of NMIIA in the biological functions and apoptosis in colorectal cancer (CRC) remain elusive. In this study, we found that NMIIA was overexpressed in CRC tissues and significantly associated with poor survival in CRC patients. In addition, NMIIA promoted CRC cell proliferation and invasion via activating the AMPK/mTOR pathway in vitro, and NMIIA knockdown inhibited CRC growth in vivo. Meanwhile, NMIIA knockdown downregulated the CSCs markers (CD44 and CD133) expression in CRC cells. Furthermore, AMPK/mTOR pathway activation effectively reversed the NMIIA knockdown-induced inhibition of proliferation, invasion and stemness in CRC cells. Finally, NMIIA protects CRC cells from 5-FU-induced apoptosis and proliferation inhibition through the AMPK/mTOR pathway. Taken together, these results indicate that NMIIA plays a pivotal role in CRC growth and progression by regulating AMPK/mTOR pathway activation, and it may act as a novel therapeutic target prognostic factor in CRC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Colorretais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Idoso , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Cadeias Pesadas de Miosina/genética , Células Tumorais Cultivadas
14.
Immunopharmacol Immunotoxicol ; 44(2): 238-246, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174751

RESUMO

BACKGROUND: Dioscin is reported to alleviate the dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice. Autophagy plays an anti-inflammatory role in UC. We herein aimed to explore the biological functions of dioscin in autophagy in UC. METHODS: To explore the effects of dioscin on UC progression, a DSS-induced mouse model of UC was established. Body weight, disease activity index and macroscopic damage index scores were recorded for seven days. Hematoxylin & Eosin (HE) staining was used to stain colon sections and an BX53 microscope was prepared to observe pathological changes. The activities of glutathione, superoxidative dismutase, and malondialdehyde were determined by commercially available kits. Western blotting was performed to measure the protein levels of p-AMPK/AMPK, p-mTOR/mTOR and autophagy-related genes. RESULTS: The DSS-induced colitis and oxidative stress in mice were ameliorated after dioscin treatment. Dioscin promoted the phosphorylation of AMPK to inhibit mTOR activation and facilitated autophagy in DSS-induced mice model of UC. CONCLUSION: Dioscin promotes autophagy by promoting the phosphorylation of AMPK to inhibit mTOR activation in ulcerative colitis.


Assuntos
Colite Ulcerativa , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Diosgenina/análogos & derivados , Modelos Animais de Doenças , Camundongos , Serina-Treonina Quinases TOR
15.
Sleep Breath ; 25(4): 1859-1865, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33483906

RESUMO

PURPOSE: The aim of this study was to examine whether or not intermittent hypoxia (IH) upregulated autophagy and the contributions of autophagy to endothelial apoptosis and dysfunction in human umbilical vein endothelial cells (HUVECs). METHOD: HUVECs were incubated under normoxia and IH conditions. After 3-, 6-, 12-, and 24-h exposure, the autophagic vacuoles and autophagosomes were observed by transmission electron microscopy and monodansylcadaverine staining. The protein levels of autophagy-related biomarkers and AMPK/mTOR pathway were measured by Western blot. The apoptosis-related proteins and the percentage of apoptotic cells were evaluated by Western blot and flow cytometry, respectively, while the levels of endothelial function biomarkers were assessed by ELISA. RESULTS: IH induced autophagy, as determined by the increased numbers of the autophagic vacuoles, autophagosomes, and by the elevated levels of Beclin-1 protein, the LC3II/LC3I ratio, and p62 degradation. IH-induced autophagic flux peaked at 12-h duration and weakened at 24 h. IH increased the ratio of p-AMPK/AMPK and decreased the ratio of p-mTOR/mTOR, while compound C restored the alteration. A significant decrease in the Bcl-2 level and the Bcl-2/Bax ratio and a significant increase in the protein expression levels of Bax and cleaved caspase 3 and in the percentage of apoptosis were observed under IH exposure. Moreover, the NO level was reduced, while the ET-1 and VEGF levels were raised under IH condition. These alterations were suppressed by the pretreatment of 3-methyladenine. CONCLUSIONS: IH upregulates autophagy through AMPK/mTOR pathway in HUVECs in vitro, which might be protective against endothelial apoptosis and dysfunction caused by IH.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Veias Umbilicais/metabolismo , Humanos , Transdução de Sinais/fisiologia
16.
Ecotoxicol Environ Saf ; 220: 112395, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102394

RESUMO

Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cobre/toxicidade , Hipotálamo/efeitos dos fármacos , Metais Pesados/toxicidade , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Cobre/metabolismo , Citocromos c/metabolismo , Exposição Ambiental , Hipotálamo/metabolismo , Metais Pesados/metabolismo , Mitocôndrias/metabolismo , Modelos Animais , Transdução de Sinais , Suínos , Proteína X Associada a bcl-2/metabolismo
17.
Immunopharmacol Immunotoxicol ; 43(5): 519-526, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34308732

RESUMO

BACKGROUND: Cytokines can induce a chronic inflammatory response in the periodontium, leading to periodontitis. Quercetin, a naturally occuring flavonoid, has been shown to inhibit periodontitis, but how it works is poorly understood. In this study, we assessed the impact of quercetin on lipopolysaccharide (LPS)-induced inflammatory damage in oral mucosal keratinocytes (hOMK107) and explored its underlying mechanism. METHODS: The viability and apoptosis of hOMK107 cells were measured after exposure to LPS, followed or not by quercetin. The production of IL-1ß, IL-6, IL-8, TNF-ɑ, iNOS, and COX-2 was quantified by enzyme-linked immunosorbent assay (ELISA), while levels of Akt, AMPK, and mTOR and their phosphorylation were detected semi-quantitatively by western blotting. RESULTS: Quercetin significantly improved cell viability and apoptosis by reversing LPS-induced upregulation of Bax and downregulation of Bcl-2 in hOMK107 cells. Quercetin decreased the production of IL-1ß, IL-6, IL-8, TNF-ɑ, iNOS, and COX-2, as well as signal transduction via the Akt/AMPK/mTOR pathway. Inhibitors of Akt, AMPK, and mTOR strengthened the anti-apoptotic effects of quercetin, while agonists of Akt, AMPK, or mTOR or Akt overexpression weakened the anti-apoptotic effects. CONCLUSION: These results indicate that quercetin may have a potential protective effect against the chronic inflammation-related periodontitis via suppressing Akt/AMPK/mTOR pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Mucosa Bucal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quercetina/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Lipopolissacarídeos/toxicidade , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
18.
Environ Toxicol ; 36(9): 1765-1774, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34037319

RESUMO

Fine particulate matter (PM2.5 ) potentially damages the respiratory system and causes respiratory diseases. Compound essential oils (CEOs) have been shown to alleviate the damage to the lung and macrophages caused by PM2.5 . However, the effect of PM2.5 exposure on the brain has rarely been investigated. When oxidative stress occurs in the brain, it readily causes neurological diseases. Autophagy is intimately involved in many physiological processes, especially processes important for the brain. Blocked or excessive autophagy causes a series of brain diseases, such as cerebral ischemia and stroke. This study investigated whether CEOs regulate excessive autophagy and reduce the oxidative stress caused by PM2.5 in the brain and BV2 microglial cells. PM2.5 increased the levels of ROS, Nox2, NF-κB and MDA while decreasing superoxide dismutase and HO-1 levels, which led to oxidative stress in the brain. The increased LC3 level and decreased P62 level suggested that PM2.5 exposure increased the level of autophagy. After exposure to PM2.5 , the levels of 5'-adenosine monophosphate-activated protein kinase (AMPK) increased, while the levels of mammalian target of rapamycin (mTOR) decreased, suggesting that PM2.5 might induce autophagy by activating the AMPK/mTOR pathway. In addition, CEOs alleviated oxidative stress and autophagy induced by PM2.5 . Therefore, we concluded that CEOs reduce oxidative stress induced by PM2.5 exposure by inhibiting autophagy via the AMPK/mTOR signaling pathway, and these findings provide new opportunities for the prevention of PM2.5 -induced brain diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Óleos Voláteis , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Humanos , Estresse Oxidativo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281285

RESUMO

Sjögren's syndrome (SS), a chronic inflammatory disease involving the salivary and lacrimal glands, presents symptoms of sicca as well as systemic manifestations such as fatigue and musculoskeletal pain. Only a few treatments have been successful in management of SS; thus treatment of the disease is challenging. Metformin is the first-line agent for type 2 diabetes and has anti-inflammatory potential. Its immunomodulatory capacity is exerted via activation of 5' adenosine monophosphate-activated protein kinase (AMPK). Metformin inhibits mitochondrial respiratory chain complex I which leads to change in adenosine mono-phosphate (AMP) to adenosine tri-phosphate (ATP) ratio. This results in AMPK activation and causes inhibition of mammalian target of rapamycin (mTOR). mTOR plays an important role in T cell differentiation and mTOR deficient T cells differentiate into regulatory T cells. In this manner, metformin enhances immunoregulatory response in an individual. mTOR is responsible for B cell proliferation and germinal center (GC) differentiation. Thus, reduction of B cell differentiation into antibody-producing plasma cells occurs via downregulation of mTOR. Due to the lack of suggested treatment for SS, metformin has been considered as a treatment strategy and is expected to ameliorate salivary gland function.


Assuntos
Metformina/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Fatores Imunológicos/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Sjogren/etiologia , Síndrome de Sjogren/fisiopatologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo
20.
J Cell Physiol ; 235(11): 8839-8851, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32329068

RESUMO

Ferroptosis, an autophagy-dependent cell death, is characterized by lipid peroxidation and iron accumulation, closely associated with pathogenesis of gestational diabetes mellitus (GDM). Sirtuin 3 (SIRT3) has positive regulation on phosphorylation of activated protein kinase (AMPK), related to maintenance of cellular redox homeostasis. However, whether SIRT3 can confer autophagy by activating the AMPK-mTOR pathway and consequently promote induction of ferroptosis is unknown. We used human trophoblastic cell line HTR8/SVneo and porcine trophoblastic cell line pTr2 to deterimine the mechanism of SIRT3 on autophagy and ferroptosis. The expression of SIRT3 protein was significantly elevated in trophoblastic cells exposed to high concentrations of glucose and ferroptosis-inducing compounds. Increased SIRT3 expression contributed to classical ferroptotic events and autophagy activation, whereas SIRT3 silencing led to resistance against both ferroptosis and autophagy. In addition, autophagy inhibition impaired SIRT3-enhanced ferroptosis. On the contrary, autophagy induction had a synergistic effect with SIRT3. Based on mechanistic investigations, SIRT3 depletion inhibited activation of the AMPK-mTOR pathway and enhanced glutathione peroxidase 4 (GPX4) level, thereby suppressing autophagy and ferroptosis. Furthermore, depletion of AMPK blocked induction of ferroptosis in trophoblasts. We concluded that upregulated SIRT3-enhanced autophagy activation by promoting AMPK-mTOR pathway and decreasing GPX4 level to induce ferroptosis in trophoblastic cells. SIRT3 deficiency was resistant to high glucose- and erastin-induced autophagy-dependent ferroptosis and is, therefore, a potential therapeutic approach for treating GDM.


Assuntos
Autofagia/fisiologia , Ferroptose/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sirtuína 3/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA