Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(10): 6201-6211, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35107260

RESUMO

Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel fluorosurfactant used as the alternative to perfluorooctanesulfonic acid (PFOS) in several applications such as fire-fighting foams and chemical enhanced oil recovery ("EOR") in China, with the annual production capacity of about 3,500 t. Here, for the first time, we investigated the degradability of OBS under the conditions of UV/persulfate (UV/PS) and UV/sulfite (UV/SF) as typical redox processes. A higher reaction rate (1.05 min-1) and total organic carbon (TOC) reduction (46.9%) but a low defluorination rate (27.6%) along with the formation of a series of fluorinated intermediates were found in UV/PS, while a high defluorination rate (87.7%) was realized in UV/SF. In particular, a nontargeted workflow using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) was established to detect fluorinated intermediates. Combined with the theoretical calculation, the distinctive degradation pathways in both oxidation and reduction processes were proposed. The degradation mechanism of OBS in UV/SF was proposed to be H/F exchange and subsequent HF elimination. Furthermore, the diluted OBS-based fluoroprotein (FP) foam was used to investigate the degradation of OBS, which confirms the treatability using the redox approach. This work provides insights into the degradability of OBS, fluorinated intermediate search, and proper treatment of related contamination.


Assuntos
Poluentes Químicos da Água , Aerossóis , Cromatografia Líquida de Alta Pressão , Oxirredução , Sódio , Sulfitos , Raios Ultravioleta , Poluentes Químicos da Água/análise
2.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374563

RESUMO

BACKGROUND: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. METHODS: In this paper, the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. RESULTS: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. CONCLUSIONS: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.

3.
Materials (Basel) ; 13(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092031

RESUMO

Novel V2O5 bifunctional photocatalysts were prepared following a wet chemical process with the addition of anionic or non-ionic surfactants into the precursor solution and further heating under reflux. Detailed characterization and investigation of the relevant light-matter interactions proved that surfactants addition had a strong impact on the morphology, while also affecting the crystallinity, the optoelectronic properties, and the surface chemistry of the novel photocatalysts. The most efficient photocatalyst (T80) was based on tween 80, a surface-active agent employed for the first time in the synthesis of vanadium oxide materials. T80 presented crystalline nature without structural defects, which are usually centers of e- - h+ recombination. This material also exhibited small crystal size, high porosity, and short migration paths for the charge carriers, enabling their effective separation during photocatalysis. Under UV light illumination, T80 was capable to reduce hexavalent chromium to trivalent up to 70% and showed high yields in degrading methylene blue azo-dye and tetracycline antibiotic water pollutants. This remarkably high bifunctional performance defines T80 as a promising and capable photocatalytic material for both advanced oxidation and reduction processes (AOPs-ARPs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA