Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2313488121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513104

RESUMO

Weyl semimetal showing open-arc surface states is a prominent example of topological quantum matter in three dimensions. With the bulk-boundary correspondence present, nontrivial surface-bulk hybridization is inevitable but less understood. Spectroscopies have been often limited to verifying the existence of surface Fermi arcs, whereas its spectral shape related to the hybridization profile in energy-momentum space is not well studied. We present an exactly solvable formalism at the surface for a wide range of prototypical Weyl semimetals. The resonant surface state and the bulk influence coexist as a surface-bulk hybrid and are treated in a unified manner. Directly accessible to angle-resolved photoemission spectroscopy, we analytically reveal universal information about the system obtained from the spectroscopy of resonant topological states. We systematically find inhomogeneous and anisotropic singular responses around the surface-bulk merging borderline crossing Weyl points, highlighting its critical role in the Weyl topology. The response in scanning tunneling spectroscopy is also discussed. The results will provide much-needed insight into the surface-bulk-coupled physical properties and guide in-depth spectroscopic investigation of the nontrivial hybrid in many topological semimetal materials.

2.
Proc Natl Acad Sci U S A ; 120(32): e2301957120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523533

RESUMO

Time-resolved, angle-resolved photoemission spectroscopy (TR-ARPES) is a one-particle spectroscopic technique that can probe excitons (two-particle excitations) in momentum space. We present an ab initio, time-domain GW approach to TR-ARPES and apply it to monolayer MoS2. We show that photoexcited excitons may be measured and quantified as satellite bands and lead to the renormalization of the quasiparticle bands. These features are explained in terms of an exciton-Floquet phenomenon induced by an exciton time-dependent bosonic field, which are orders of magnitude stronger than those of laser field-induced Floquet bands in low-dimensional semiconductors. Our findings imply a way to engineer Floquet matter through the coherent oscillation of excitons and open the new door for mechanisms for band structure engineering.

3.
Proc Natl Acad Sci U S A ; 120(40): e2308588120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748057

RESUMO

A recently discovered group of kagome metals AV[Formula: see text]Sb[Formula: see text] (A = K, Rb, Cs) exhibit a variety of intertwined unconventional electronic phases, which emerge from a puzzling charge density wave phase. Understanding of this charge-ordered parent phase is crucial for deciphering the entire phase diagram. However, the mechanism of the charge density wave is still controversial, and its primary source of fluctuations-the collective modes-has not been experimentally observed. Here, we use ultrashort laser pulses to melt the charge order in CsV[Formula: see text]Sb[Formula: see text] and record the resulting dynamics using femtosecond angle-resolved photoemission. We resolve the melting time of the charge order and directly observe its amplitude mode, imposing a fundamental limit for the fastest possible lattice rearrangement time. These observations together with ab initio calculations provide clear evidence for a structural rather than electronic mechanism of the charge density wave. Our findings pave the way for a better understanding of the unconventional phases hosted on the kagome lattice.

4.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042814

RESUMO

We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.

5.
Nano Lett ; 24(7): 2175-2180, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38181506

RESUMO

Silicene, a single layer of Si atoms, shares many remarkable electronic properties with graphene. So far, silicene has been synthesized in its epitaxial form on a few surfaces of solids. Thus, the problem of silicene-substrate interaction appears, which usually depresses the original electronic behavior but may trigger properties superior to those of bare components. We report the direct observation of robust Dirac-dispersed bands in epitaxial silicene grown on Au(111) films deposited on Si(111). By performing in-depth angle-resolved photoemission spectroscopy measurements, we reveal three pairs of one-dimensional bands with linear dispersion running in three different directions of an otherwise two-dimensional system. By combining these results with first-principles calculations, we explore the nature of these bands and point to strong interaction between subsystems forming a complex Si-Au heterostructure. These findings emphasize the essential role of interfacial coupling and open a unique materials platform for exploring exotic quantum phenomena and applications in future-generation nanoelectronics.

6.
Nano Lett ; 24(21): 6278-6285, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758393

RESUMO

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn4, as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn4 via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

7.
Nano Lett ; 24(25): 7557-7563, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38758657

RESUMO

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

8.
Nano Lett ; 24(1): 82-88, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109843

RESUMO

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

9.
Rep Prog Phys ; 87(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518359

RESUMO

Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.

10.
Proc Natl Acad Sci U S A ; 118(27)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187886

RESUMO

In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound [Formula: see text] (URS) into the so-called hidden-order (HO) phase when the temperature drops below [Formula: see text] K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition.

11.
Nano Lett ; 23(15): 7008-7013, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466311

RESUMO

The recent discovery of strongly correlated phases in twisted transition-metal dichalcogenides (TMDs) highlights the significant impact of twist-induced modifications on electronic structures. In this study, we employed angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µ-ARPES) to investigate these modifications by comparing valence band structures of twisted (5.3°) and nontwisted (AB-stacked) bilayer regions within the same WSe2 device. Relative to the nontwisted region, the twisted area exhibits pronounced moiré bands and ∼90 meV renormalization at the Γ-valley, substantial momentum separation between different layers, and an absence of flat bands at the K-valley. We further simulated the effects of lattice relaxation, which can flatten the Γ-valley edge but not the K-valley edge. Our results provide a direct visualization of twist-induced modifications in the electronic structures of twisted TMDs and elucidate their valley-dependent responses to lattice relaxation.

12.
Nano Lett ; 23(12): 5625-5633, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310876

RESUMO

Kagome superconductors AV3Sb5 (A = K, Rb, Cs) provide a fertile playground for studying intriguing phenomena, including nontrivial band topology, superconductivity, giant anomalous Hall effect, and charge density wave (CDW). Recently, a C2 symmetric nematic phase prior to the superconducting state in AV3Sb5 drew enormous attention due to its potential inheritance of the symmetry of the unusual superconductivity. However, direct evidence of the rotation symmetry breaking of the electronic structure in the CDW state from the reciprocal space is still rare, and the underlying mechanism remains ambiguous. The observation shows unconventional unidirectionality, indicative of rotation symmetry breaking from six-fold to two-fold. The interlayer coupling between adjacent planes with π-phase offset in the 2 × 2 × 2 CDW phase leads to the preferred two-fold symmetric electronic structure. These rarely observed unidirectional back-folded bands in KV3Sb5 may provide important insights into its peculiar charge order and superconductivity.

13.
Nano Lett ; 23(16): 7568-7575, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578460

RESUMO

We study low-frequency linearly polarized laser-dressing in materials with valley (graphene and hexagonal-Boron-Nitride) and topological (Dirac- and Weyl-semimetals) properties. In Dirac-like linearly dispersing bands, the laser substantially moves the Dirac nodes away from their original position, and the movement direction can be fully controlled by rotating the laser polarization. We prove that this effect originates from band nonlinearities away from the Dirac nodes. We further demonstrate that this physical mechanism is widely applicable and can move the positions of the valley minima in hexagonal materials to tune valley selectivity, split and move Weyl cones in higher-order Weyl semimetals, and merge Dirac nodes in three-dimensional Dirac semimetals. The model results are validated with ab initio calculations. Our results directly affect efforts for exploring light-dressed electronic structure, suggesting that one can benefit from band nonlinearity for tailoring material properties, and highlight the importance of the full band structure in nonlinear optical phenomena in solids.

14.
Nano Lett ; 23(5): 1673-1679, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36849129

RESUMO

Boron-based two-dimensional (2D) materials are an excellent platform for nanoelectronics applications. Rhombohedral boron monosulfide (r-BS) is attracting particular attention because of its unique layered crystal structure suitable for exploring various functional properties originating in the 2D nature. However, studies to elucidate its fundamental electronic states have been largely limited because only tiny powdered crystals were available, hindering a precise investigation by spectroscopy such as angle-resolved photoemission spectroscopy (ARPES). Here we report the direct mapping of the band structure with a tiny (∼20 × 20 µm2) r-BS powder crystal by utilizing microfocused ARPES. We found that r-BS is a p-type semiconductor with a band gap of >0.5 eV characterized by the anisotropic in-plane effective mass. The present results demonstrate the high applicability of micro-ARPES to tiny powder crystals and widen an opportunity to access the yet-unexplored electronic states of various novel materials.

15.
Nano Lett ; 23(15): 6799-6806, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486984

RESUMO

Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.

16.
Nano Lett ; 23(14): 6277-6283, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459226

RESUMO

Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy-momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.

17.
Nano Lett ; 23(14): 6433-6439, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37460109

RESUMO

Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (µ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.

18.
Nano Lett ; 23(16): 7539-7545, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561835

RESUMO

Understanding the collective behavior of the quasiparticles in solid-state systems underpins the field of nonvolatile electronics, including the opportunity to control many-body effects for well-desired physical phenomena and their applications. Hexagonal boron nitride (hBN) is a wide-energy-bandgap semiconductor, showing immense potential as a platform for low-dimensional device heterostructures. It is an inert dielectric used for gated devices, having a negligible orbital hybridization when placed in contact with other systems. Despite its inertness, we discover a large electron mass enhancement in few-layer hBN affecting the lifetime of the π-band states. We show that the renormalization is phonon-mediated and consistent with both single- and multiple-phonon scattering events. Our findings thus unveil a so-far unknown many-body state in a wide-bandgap insulator, having important implications for devices using hBN as one of their building blocks.

19.
Nano Lett ; 23(12): 5610-5616, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37321211

RESUMO

Two-dimensional checkerboard lattice, the simplest line-graph lattice, has been intensively studied as a toy model, while material design and synthesis remain elusive. Here, we report theoretical prediction and experimental realization of the checkerboard lattice in monolayer Cu2N. Experimentally, monolayer Cu2N can be realized in the well-known N/Cu(100) and N/Cu(111) systems that were previously mistakenly believed to be insulators. Combined angle-resolved photoemission spectroscopy measurements, first-principles calculations, and tight-binding analysis show that both systems host checkerboard-derived hole pockets near the Fermi level. In addition, monolayer Cu2N has outstanding stability in air and organic solvents, which is crucial for further device applications.

20.
Nano Lett ; 23(5): 1830-1835, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651800

RESUMO

In the Dirac semimetal BaNiS2, the Dirac nodes are located along the Γ-M symmetry line of the Brillouin zone, instead of being pinned at fixed high-symmetry points. We take advantage of this peculiar feature to demonstrate the possibility of moving the Dirac bands along the Γ-M symmetry line in reciprocal space by varying the concentration of K atoms adsorbed onto the surface of cleaved BaNiS2 single crystals. By means of first-principles calculations, we give a full account of this observation by considering the effect of the electrons donated by the K atom on the charge transfer gap, which establishes a promising tool for engineering Dirac states at surfaces, interfaces, and heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA