Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0042923, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38391161

RESUMO

Actinobacillus pleuropneumoniae is an important respiratory pathogen that can cause porcine contagious pleuropneumonia (PCP), resulting in significant economic losses in swine industry. Microorganisms are subjected to drastic changes in environmental osmolarity. In order to alleviate the drastic rise or fall of osmolarity, cells activate mechanosensitive channels MscL and MscS through tension changes. MscL not only regulates osmotic pressure but also has been reported to secrete protein and uptake aminoglycoside antibiotic. However, MscL and MscS, as the most common mechanosensitive channels, have not been characterized in A. pleuropneumoniae. In this study, the osmotic shock assay showed that MscL increased sodium adaptation by regulating cell length. The results of MIC showed that deletion of mscL decreased the sensitivity of A. pleuropneumoniae to multiple antibiotics, while deletion of mscS rendered A. pleuropneumoniae hypersensitive to penicillin. Biofilm assay demonstrated that MscL contributed the biofilm formation but MscS did not. The results of animal assay showed that MscL and MscS did not affect virulence in vivo. In conclusion, MscL is essential for sodium hyperosmotic tolerance, biofilm formation, and resistance to chloramphenicol, erythromycin, penicillin, and oxacillin. On the other hand, MscS is only involved in oxacillin resistance.IMPORTANCEBacterial resistance to the external environment is a critical function that ensures the normal growth of bacteria. MscL and MscS play crucial roles in responding to changes in both external and internal environments. However, the function of MscL and MscS in Actinobacillus pleuropneumoniae has not yet been reported. Our study shows that MscL plays a significant role in osmotic adaptation, antibiotic resistance, and biofilm formation of A. pleuropneumoniae, while MscS only plays a role in antibiotic resistance. Our findings provide new insights into the functional characteristics of MscL and MscS in A. pleuropneumoniae. MscL and MscS play a role in antibiotic resistance and contribute to the development of antibiotics for A. pleuropneumoniae.


Assuntos
Actinobacillus pleuropneumoniae , Doenças dos Suínos , Animais , Suínos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Virulência , Oxacilina , Sódio/metabolismo , Doenças dos Suínos/microbiologia
2.
BMC Vet Res ; 20(1): 241, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831324

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae is a serious pathogen in pigs. The abundant application of antibiotics has resulted in the gradual emergence of drugresistant bacteria, which has seriously affected treatment of disease. To aid measures to prevent the emergence and spread of drug-resistant bacteria, herein, the kill rate and mutant selection window (MSW) of danofloxacin (DAN) against A. pleuropneumoniae were evaluated. METHODS: For the kill rate study, the minimum inhibitory concentration (MIC) was tested using the micro dilution broth method and time-killing curves of DAN against A. pleuropneumoniae grown in tryptic soy broth (TSB) at a series drug concentrations (from 0 to 64 MIC) were constructed. The relationships between the kill rate and drug concentrations were analyzed using a Sigmoid Emax model during different time periods. For the MSW study, the MIC99 (the lowest concentration that inhibited the growth of the bacteria by ≥ 99%) and mutant prevention concentration (MPC) of DAN against A. pleuropneumoniae were measured using the agar plate method. Then, a peristaltic pump infection model was established to simulate the dynamic changes of DAN concentrations in pig lungs. The changes in number and sensitivity of A. pleuropneumoniae were measured. The relationships between pharmacokinetic/pharmacodynamic parameters and the antibacterial effect were analyzed using the Sigmoid Emax model. RESULTS: In kill rate study, the MIC of DAN against A. pleuropneumoniae was 0.016 µg/mL. According to the kill rate, DAN exhibited concentration-dependent antibacterial activity against A. pleuropneumoniae. A bactericidal effect was observed when the DAN concentration reached 4-8 MIC. The kill rate increased constantly with the increase in DAN concentration, with a maximum value of 3.23 Log10 colony forming units (CFU)/mL/h during the 0-1 h period. When the drug concentration was in the middle part of the MSW, drugresistant bacteria might be induced. Therefore, the dosage should be avoided to produce a mean value of AUC24h/MIC99 (between 31.29 and 62.59 h. The values of AUC24h/MIC99 to achieve bacteriostatic, bactericidal, and eradication effects were 9.46, 25.14, and > 62.59 h, respectively. CONCLUSION: These kill rate and MSW results will provide valuable guidance for the use of DAN to treat A. pleuropneumoniae infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antibacterianos , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Animais , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Suínos , Farmacorresistência Bacteriana , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Mutação
3.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755662

RESUMO

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Lesão Pulmonar Aguda , Flavanonas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Camundongos , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Heme Oxigenase-1 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Membrana , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256101

RESUMO

Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP.


Assuntos
Actinobacillus pleuropneumoniae , Flavanonas , NF-kappa B , Animais , Suínos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , Caspase 1
5.
Vet Res ; 54(1): 42, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237397

RESUMO

Actinobacillus pleuropneumoniae is an important swine respiratory pathogen. Previous studies have suggested that growth as a biofilm is a natural state of A. pleuropneumoniae infection. To understand the survival features involved in the biofilm state, the growth features, morphology and gene expression profiles of planktonic and biofilm A. pleuropneumoniae were compared. A. pleuropneumoniae in biofilms showed reduced viability but maintained the presence of extracellular polymeric substances (EPS) after late log-phase. Under the microscope, bacteria in biofilms formed dense aggregated structures that were connected by abundant EPS, with reduced condensed chromatin. By construction of Δpga and ΔdspB mutants, polymeric ß-1,6-linked N-acetylglucosamine and dispersin B were confirmed to be critical for normal biofilm formation. RNA-seq analysis indicated that, compared to their planktonic counterparts, A. pleuropneumoniae in biofilms had an extensively altered transcriptome. Carbohydrate metabolism, energy metabolism and translation were significantly repressed, while fermentation and genes contributing to EPS synthesis and translocation were up-regulated. The regulators Fnr (HlyX) and Fis were found to be up-regulated and their binding motifs were identified in the majority of the differentially expressed genes, suggesting their coordinated global role in regulating biofilm metabolism. By comparing the transcriptome of wild-type biofilm and Δpga, the utilization of oligosaccharides, iron and sulfur and fermentation were found to be important in adhesion and aggregation during biofilm formation. Additionally, when used as inocula, biofilm bacteria showed reduced virulence in mouse, compared with planktonic grown cells. Thus, these results have identified new facets of A. pleuropneumoniae biofilm maintenance and regulation.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Animais , Suínos , Camundongos , Actinobacillus pleuropneumoniae/genética , Biofilmes , Transcriptoma , Virulência , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
6.
Vet Res ; 54(1): 62, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475032

RESUMO

Actinobacillus pleuropneumoniae (APP) is a gram-negative pathogenic bacterium responsible for porcine contagious pleuropneumonia (PCP), which can cause porcine necrotizing and hemorrhagic pleuropneumonia. Actinobacillus pleuropneumoniae-RTX-toxin (Apx) is an APP virulence factor. APP secretes a total of four Apx toxins, among which, ApxI demonstrates strong hemolytic activity and cytotoxicity, causing lysis of porcine erythrocytes and apoptosis of porcine alveolar macrophages. However, the protein interaction network between this toxin and host cells is still poorly understood. TurboID mediates the biotinylation of endogenous proteins, thereby targeting specific proteins and local proteomes through gene fusion. We applied the TurboID enzyme-catalyzed proximity tagging method to identify and study host proteins in immortalized porcine alveolar macrophage (iPAM) cells that interact with the exotoxin ApxI of APP. His-tagged TurboID-ApxIA and TurboID recombinant proteins were expressed and purified. By mass spectrometry, 318 unique interacting proteins were identified in the TurboID ApxIA-treated group. Among them, only one membrane protein, caveolin-1 (CAV1), was identified. A co-immunoprecipitation assay confirmed that CAV1 can interact with ApxIA. In addition, overexpression and RNA interference experiments revealed that CAV1 was involved in ApxI toxin-induced apoptosis of iPAM cells. This study provided first-hand information about the proteome of iPAM cells interacting with the ApxI toxin of APP through the TurboID proximity labeling system, and identified a new host membrane protein involved in this interaction. These results lay a theoretical foundation for the clinical treatment of PCP.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Suínos , Animais , Actinobacillus pleuropneumoniae/genética , Macrófagos Alveolares/metabolismo , Exotoxinas/farmacologia , Apoptose , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Proteínas Hemolisinas/toxicidade , Doenças dos Suínos/microbiologia
7.
Vet Res ; 54(1): 76, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705063

RESUMO

Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Ascomicetos , Infecções por Mycoplasma , Pleuropneumonia , Pneumonia , Doenças dos Suínos , Animais , Camundongos , Suínos , Neutrófilos , Pneumonia/veterinária , Pleuropneumonia/veterinária , Infecções por Mycoplasma/veterinária , Infecções por Actinobacillus/veterinária , Pulmão
8.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951290

RESUMO

AIMS: Swine respiratory disease (SRD) is a major disease complex in pigs that causes severe economic losses. SRD is associated with several intrinsic and extrinsic factors such as host health status, viruses, bacteria, and environmental factors. Particularly, it is known that many pathogens are associated with SRD to date, but most of the test to detect those pathogens can be normally investigated only one pathogen while taking time and labor. Therefore, it is desirable to develop rapidly and efficiently detectable methods those pathogens to minimize the damage caused by SRD. METHODS AND RESULTS: We designed a multiplex real-time RT-PCR (RT-qPCR) system to diagnose simultaneously 16 pathogens, including nine viruses and seven bacteria associated with SRD, on the basis of single qPCR and RT-qPCR assays reported in previous studies. Multiplex RT-qPCR system we designed had the same ability to single RT-qPCR without significant differences in detection sensitivity for all target pathogens at minimum to maximum genomic levels. Moreover, the primers and probes used in this system had highly specificity because the sets had not been detected pathogens other than the target and its taxonomically related pathogens. Furthermore, our data demonstrated that this system would be useful to detect a causative pathogen in the diagnosis using oral fluid from healthy pigs and lung tissue from pigs with respiratory disorders collected in the field. CONCLUSIONS: The rapid detection of infected animals from the herd using our system will contribute to infection control and prompt treatment in the field.


Assuntos
Doenças dos Suínos , Vírus , Animais , Suínos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Suínos/microbiologia , Pulmão , Reação em Cadeia da Polimerase Multiplex/métodos , Bactérias
9.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511601

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins ß-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus , Infecções por Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Receptor 4 Toll-Like/metabolismo , Junções Íntimas , Pulmão/microbiologia , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Chá/metabolismo , Doenças dos Suínos/microbiologia
10.
J Bacteriol ; 204(2): e0032621, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807725

RESUMO

Bacteria have evolved a variety of enzymes to eliminate endogenous or host-derived oxidative stress factors. The Dps protein, first identified in Escherichia coli, contains a ferroxidase center, and protects bacteria from reactive oxygen species damage. Little is known of the role of Dps-like proteins in bacterial pathogenesis. Actinobacillus pleuropneumoniae causes pleuropneumonia, a respiratory disease of swine. The A. pleuropneumoniae ftpA gene is upregulated during shifts to anaerobiosis, in biofilms and, as found in this study, in the presence of H2O2. An A. pleuropneumoniae ftpA deletion mutant (ΔftpA) had increased H2O2 sensitivity, decreased intracellular viability in macrophages, and decreased virulence in a mouse infection model. Expression of ftpA in an E. coli dps mutant restored wild-type H2O2 resistance. FtpA possesses a conserved ferritin domain containing a ferroxidase site. Recombinant rFtpA bound and oxidized Fe2+ reversibly. Under aerobic conditions, the viability of an ΔftpA mutant was reduced compared with the wild-type strain after extended culture, upon transition from anaerobic to aerobic conditions, and upon supplementation with Fenton reaction substrates. Under anaerobic conditions, the addition of H2O2 resulted in a more severe growth defect of ΔftpA than it did under aerobic conditions. Therefore, by oxidizing and mineralizing Fe2+, FtpA alleviates the oxidative damage mediated by intracellular Fenton reactions. Furthermore, by mutational analysis, two residues were confirmed to be critical for Fe2+ binding and oxidization, as well as for A. pleuropneumoniae H2O2 resistance. Taken together, the results of this study demonstrate that A. pleuropneumoniae FtpA is a Dps-like protein, playing critical roles in oxidative stress resistance and virulence. IMPORTANCE As a ferroxidase, Dps of Escherichia coli can protect bacteria from reactive oxygen species damage, but its role in bacterial pathogenesis has received little attention. In this study, FtpA of the swine respiratory pathogen A. pleuropneumoniae was identified as a new Dps-like protein. It facilitated A. pleuropneumoniae resistance to H2O2, survival in macrophages, and infection in vivo. FtpA could bind and oxidize Fe2+ through two important residues in its ferroxidase site and protected the bacteria from oxidative damage mediated by the intracellular Fenton reaction. These findings provide new insights into the role of the FtpA-based antioxidant system in the pathogenesis of A. pleuropneumoniae, and the conserved Fe2+ binding ligands in Dps/FtpA provide novel drug target candidates for disease prevention.


Assuntos
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Estresse Fisiológico/genética , Actinobacillus pleuropneumoniae/química , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Escherichia coli/genética , Feminino , Ferro/metabolismo , Camundongos , Espécies Reativas de Oxigênio , Virulência/genética
11.
Infect Immun ; 90(9): e0023922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938858

RESUMO

Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions in vitro and lethality in mice. By using narQ and narP deletion mutants and single-residue-mutated complementary strains of ΔnarQ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, narQ, narP, and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae in vivo, suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manose/metabolismo , Camundongos , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Pentoses/metabolismo , Suínos , Virulência
12.
Microb Pathog ; 172: 105759, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087692

RESUMO

Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae affects pig health status and the swine industry worldwide. Despite the extensive number of studies focused on A. pleuropneumoniae infection and vaccine development, a thorough analysis of the A. pleuropneumoniae exoproteome is still missing. Using a complementary approach of quantitative proteomics and immunoproteomics we gained an in-depth insight into the A. pleuropneumoniae serotype 2 exoproteome, which provides the basis for future functional studies. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 593 exoproteins, of which 104 were predicted to be virulence factors. The RTX toxins ApxIIA and ApxIIIA -were found to be the most abundant proteins in the A. pleuropneumoniae serotype 2 exoproteome. Furthermore, the ApxIVA toxin was one of the proteins showing the highest abundance, although ApxIVA is commonly assumed to be expressed exclusively in vivo. Our study revealed several antigens, including proteins with moonlight functions, such as the elongation factor (EF)-Tu, and proteins linked to specific metabolic traits, such as the maltodextrin-binding protein MalE, that warrant future functional characterization and might present potential targets for novel therapeutics and vaccines. Our Ig-classes specific serological proteome analysis (SERPA) approach allowed us to explore the development of the host humoral immune response over the course of the infection. These SERPAs pinpointed proteins that might play a key role in virulence and persistence and showed that the immune response to the different Apx toxins is distinct. For instance, our results indicate that the ApxIIIA toxin has properties of a thymus-independent antigen, which should be studied in more detail.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Suínos , Animais , Pleuropneumonia/veterinária , Infecções por Actinobacillus/veterinária , Proteômica , Proteoma/metabolismo , Antígenos T-Independentes/metabolismo , Cromatografia Líquida , Proteínas de Bactérias/metabolismo , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo , Fatores de Alongamento de Peptídeos
13.
J Appl Microbiol ; 132(3): 1713-1723, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34608714

RESUMO

AIMS: The rise in antibiotic resistance requires the reduction of antibiotic use in all sectors. In animal production, many commercial alternatives to antibiotics have been developed for incorporation into feeds, but a lack of evidence on their antibacterial activity limits confidence in their application. We aim to compare the antibacterial activity of feed additives and active ingredients to better understand their usefulness. METHODS AND RESULTS: The antibacterial activity of 34 active ingredients and feed additives, including medium- and short-chain organic acids and essential oils, was tested against pure cultures of five bacterial swine pathogens. Antibacterial activity was observed using an agar plug diffusion method and quantified via broth microdilution. A diverse range of antibacterial activities were observed. The highest inhibitory activity against Staphylococcus aureus and Streptococcus suis was exhibited by the C12 monoglyceride (0.49 mg ml-1 ). The monoglyceride of C12 was more effective than C12:0 against Strep. suis, but neither C12:0 nor its monoglyceride showed efficacy against the gram-negative micro-organisms tested. The most active against Escherichia coli were the C6:0 medium-chain organic acids and potassium diformate (1.95 mg ml-1 ). For Salmonella Typhimurium, potassium diformate, sodium diformate, and a blend of C8:0/C10:0 (each 1.96 mg ml-1 ), and for Actinobacillus pleuropneumoniae, eugenol (0.49 mg ml-1 ) showed the most promising activity. CONCLUSIONS: We identified broad-spectrum antibacterial activity, such as the C6:0 MCOA, and those with interesting narrow-spectrum activity, notably the killing of Strep. suis by C12 monoglyceride. We have identified additives that show the most promising bioactivity against specific pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: We broadly compare a large collection of feed additives and active ingredients for their antibacterial activity against a diverse panel of bacterial swine pathogens. This provides a solid base of evidence which can drive the development of feed supplementation strategies with the aim of reducing dependency on antibiotic use in swine production.


Assuntos
Actinobacillus pleuropneumoniae , Streptococcus suis , Doenças dos Suínos , Animais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Suínos , Doenças dos Suínos/microbiologia
14.
BMC Vet Res ; 18(1): 279, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842618

RESUMO

BACKGROUND: Flagellin elicits potent immune response and may serve as a vaccine adjuvant. We previously reported that the N-terminus of flagellin (residues 1-99, nFliC) is sufficient for vaccine efficacy enhancement against Pasteurella multocida challenge in chickens. In this study, we futher tested the adjuvancy of nFliC in a subunit vaccine against the pig pathogen Actinobacillus pleuropneumoniae in a mice model. For vaccine formulation, the antigen ApxIIPF (the pore-forming region of the exotoxin ApxII) was combined with nFliC, either through genetic fusion or simple admixture. RESULTS: Immune analysis showed that nFliC, introduced through genetic fusion or admixture, enhanced both humoral (antibody levels) and cellular (T cell response and cytokine production) immunity. In a challenge test, nFliC increased vaccine protective efficacy to 60-80%, vs. 20% for the antigen-only group. Further analysis showed that, even without a supplemental adjuvant such as mineral salt or oil emulsion, genetically linked nFliC still provided significant immune enhancement. CONCLUSIONS: We conclude that nFliC is a versatile and potent adjuvant for vaccine formulation.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Roedores , Doenças dos Suínos , Infecções por Actinobacillus/prevenção & controle , Infecções por Actinobacillus/veterinária , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Flagelina , Camundongos , Suínos , Doenças dos Suínos/prevenção & controle , Eficácia de Vacinas
15.
Lett Appl Microbiol ; 75(2): 442-449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35616177

RESUMO

Actinobacillus pleuropneumoniae is the primary aetiological agent of contagious porcine pleuropneumonia associated with serious economic impact on pig husbandry worldwide. Diagnosis of the disease by existing techniques including isolation and identification of bacteria followed by serotyping, serological techniques, conventional PCR, real-time PCR and LAMP assays are cumbersome, time-consuming, costly and not suitable for rapid field application. A novel isothermal polymerase chain reaction (PSR) technique is standardized for all the reagents, incubation time and incubation temperature against A. pleuropneumoniae. The sensitivity of the assay was determined against various dilutions of purified DNA and total bacterial count. The specificity of the assay was determined against 11 closely related bacterial isolates. The relative sensitivity and specificity were compared with bacterial isolation, conventional PCR and real-time PCR assays. The PSR assay for specific detection was standardized at 64°C for 30 min of incubation in a water bath. The result was visible by the naked eye after centrifugation of the reaction mixture or after incorporation of SYBR Green dye as yellowish-green fluorescence. The technique was found to be 100% specific and equally sensitive with real-time PCR and 10 times more sensitive than conventional PCR. The PSR assay could be applicable in the detection of the organisms in porcine nasal swabs spiked with A. pleuropneumoniae. This is the first-ever report on the development of PSR for specific detection of A. pleuropneumoniae and can be applied for early diagnosis at the field level.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Mycoplasma/genética , Pleuropneumonia/diagnóstico , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia
16.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012224

RESUMO

Actinobacillus pleuropneumoniae (A.pp, Gram negative) and Streptococcus (S.) suis (Gram positive) can cause severe diseases in pigs. During infection, neutrophils infiltrate to counteract these pathogens with phagocytosis and/or neutrophil extracellular traps (NETs). NETs consist of a DNA-backbone spiked with antimicrobial components. The NET formation mechanisms in porcine neutrophils as a response to both of the pathogens are not entirely clear. The aim of this study was to investigate whether A.pp (serotype 2, C3656/0271/11) and S. suis (serotype 2, strain 10) induce NETs by NADPH oxidase- or CD18-dependent mechanisms and to characterize phenotypes of NETs in porcine neutrophils. Therefore, we investigated NET induction in porcine neutrophils in the presence and absence of NET inhibitors and quantified NETs after 3 h. Furthermore, NETosis and phagocytosis were investigated by transmission electron microscopy after 30 min to characterize different phenotypes. A.pp and S. suis induce NETs that are mainly ROS-dependent. A.pp induces NETs that are partially CD18-dependent. Thirty minutes after infection, both of the pathogens induced a vesicular NET formation with only slight differences. Interestingly, some neutrophils showed only NET-marker positive phagolysosomes, but no NET-marker positive vesicles. Other neutrophils showed vesicular NETs and only NET-marker negative phagolysosomes. In conclusion, both of the pathogens induce ROS-dependent NETs. Vesicular NETosis and phagocytosis occur in parallel in porcine neutrophils in response to S. suis serotype 2 and A.pp serotype 2.


Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Streptococcus suis , Animais , Neutrófilos , Espécies Reativas de Oxigênio , Suínos
17.
J Biol Chem ; 295(17): 5771-5784, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152227

RESUMO

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-ß(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/enzimologia , Cápsulas Bacterianas/química , Oligossacarídeos/química , Actinobacillus pleuropneumoniae/metabolismo , Cápsulas Bacterianas/enzimologia , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Técnicas de Química Sintética , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo
18.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33685942

RESUMO

Porcine pleuropneumonia is a common infectious disease of pigs caused by Actinobacillus pleuropneumoniae Interferon gamma (IFN-γ) expression increases in the lung of pigs after A. pleuropneumoniae infection, but the role of IFN-γ during the infection is still obscure. In this study, an IFN-γ-/- mouse infection model was established, and bacterial load, levels of inflammatory cytokines, and types of neutrophils in the lungs were studied at different times post-A. pleuropneumoniae infection. We found that wild-type (WT) mice were more susceptible to A. pleuropneumoniae than IFN-γ-/- mice. At 6 h postinfection (hpi), the expression of interleukin 18 (IL-18) and IL-1ß in the lungs of IFN-γ-/- mice was significantly increased compared to WT mice. The bacterial load and levels of inflammatory cytokines (IL-1ß and IL-6) of IFN-γ-/- mice were significantly reduced at 12 hpi compared to WT mice. After an initial loss, the numbers of lung polymorphonuclear (PMN)-I cells dramatically increased in the lungs of IFN-γ-/- but not WT mice, whereas PMN-II cells continually decreased. Finally, in vivo administration of IL-18 significantly reduced clinical scores and bacterial load in the lungs of A. pleuropneumoniae-infected mice. This study identifies IFN-γ as a target for regulating the inflammatory response in the lung and provides a basis for understanding the course of clinical bacterial pneumonia and for the formulation of treatment protocols.


Assuntos
Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/imunologia , Interações Hospedeiro-Patógeno , Interleucina-18/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/patologia
19.
Vet Res ; 52(1): 10, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472678

RESUMO

Serotyping is the most common method to characterize field isolates of Actinobacillus (A.) pleuropneumoniae, the etiological agent of porcine pleuropneumonia. Based on serology, many farms seem to be infected and antibodies against a wide variety of serovars are detectable, but, so far it is unknown to what degree respective serovars contribute to outbreaks of clinical manifest disease. In this study, 213 German A. pleuropneumoniae field isolates retrieved for diagnostic purposes from outbreaks of porcine pleuropneumonia between 2010 and 2019 were genetically serotyped and analyzed regarding their apx-toxin gene profile using molecular methods. Serotyping revealed a prominent role of serovar 2 in clinical cases (64% of all isolates) and an increase in the detection of this serovar since 2010 in German isolates. Serovar 9/11 followed as the second most frequent serovar with about 15% of the isolates. Furthermore, very recently described serovars 16 (n = 2) and 18 (n = 8) were detected. Most isolates (93.4%) showed apx-profiles typical for the respective serovar. However, this does not hold true for isolates of serovar 18, as 75% (n = 6) of all isolates of this serovar deviated uniformly from the "typical" apx-gene profile of the reference strain 7311555. Notably, isolates from systemic lesions such as joints or meninges did not harbor the complete apxICABD operon which is considered typical for highly virulent strains. Furthermore, the extremely low occurrence (n = 1) of NAD independent (biovar II) isolates in German A. pleuropneumoniae was evident in our collection of clinical isolates.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , Genótipo , Técnicas de Genotipagem/veterinária , Alemanha , Pleuropneumonia/microbiologia , Sorogrupo , Sorotipagem/veterinária , Sus scrofa , Suínos
20.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576206

RESUMO

Actinobacillus pleuropneumoniae is a pathogen that infects pigs and poses a serious threat to the pig industry. The emergence of quinolone-resistant strains of A.pleuropneumoniae further limits the choice of treatment. However, the mechanisms behind quinolone resistance in A.pleuropneumoniae remain unclear. The genomes of a ciprofloxacin-resistant strain, A. pleuropneumoniae SC1810 and its isogenic drug-sensitive counterpart were sequenced and analyzed using various bioinformatics tools, revealing 559 differentially expressed genes. The biological membrane, plasmid-mediated quinolone resistance genes and quinolone resistance-determining region were detected. Upregulated expression of efflux pump genes led to ciprofloxacin resistance. The expression of two porins, OmpP2B and LamB, was significantly downregulated in the mutant. Three nonsynonymous mutations in the mutant strain disrupted the water-metal ion bridge, subsequently reducing the affinity of the quinolone-enzyme complex for metal ions and leading to cross-resistance to multiple quinolones. The mechanism of quinolone resistance in A. pleuropneumoniae may involve inhibition of expression of the outer membrane protein genes ompP2B and lamB to decrease drug influx, overexpression of AcrB in the efflux pump to enhance its drug-pumping ability, and mutation in the quinolone resistance-determining region to weaken the binding of the remaining drugs. These findings will provide new potential targets for treatment.


Assuntos
Quinolonas/farmacologia , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Biofilmes/efeitos dos fármacos , Porinas/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA