Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 217(2): 151-158, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38767592

RESUMO

Natural killer (NK) cells play a crucial role in controlling viral infections. The ability to kill infected cells without prior immunization, yet being tolerant to self, healthy cells, depends on the balance of germ-line encoded surface receptors. NK-cell receptors are divided into either activating, leading to activation of NK cell and its cytotoxic and pro-inflammatory activity, or inhibitory, providing tolerance for a target cell. The signals from inhibitory receptors dominate and NK-cell activation requires stimulation of activating receptors. In viral infections, NK-cell interaction with infected cells can result in activation, memory-like NK-cell differentiation, or NK-cell exhaustion, which constitutes one of the viral immune evasion mechanisms. All of these states are associated with the modulation of NK-cell receptor expression. In this review, we summarize the current knowledge of NK-cell receptors and their role in viral infection control, as well as the alterations of their expression observed in acute or chronic infections. We present recently discovered SARS-CoV-2-mediated modulation of NK-cell receptor expression and compare them with other human viral infections. Finally, since modulation of NK-cell receptor activation gives a promising addition to currently used antiviral therapies, we briefly discuss the clinical significance and future perspective of the application of agonists or antagonists of activating and inhibitory receptors, respectively. In sum, our review shows that although much is known about NK-cell receptor biology, a deeper understanding of NK-cell receptors role in viral infections is still needed.


Assuntos
COVID-19 , Células Matadoras Naturais , Receptores de Células Matadoras Naturais , SARS-CoV-2 , Viroses , Humanos , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , COVID-19/imunologia , Viroses/imunologia , Animais , Ativação Linfocitária/imunologia
2.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474506

RESUMO

Natural products obtained from marine organisms continue to be a rich source of novel structural architecture and of importance in drug discovery, medicine, and health. However, the success of such endeavors depends on the exact structural elucidation and access to sufficient material, often by stereoselective total synthesis, of the isolated natural product of interest. (-)-Mucosin (1), a fatty acid derivative, previously presumed to contain a rare cis-bicyclo[4.3.0]non-3-ene moiety, has since been shown to be the trans-congener. Analytically, the fused bicyclic ring system in (-)-1 constitutes a particular challenge in order to establish its relative and absolute stereochemistry. Herein, data from biological evaluations, NMR and molecular modeling studies of (-)-1 are presented. An overview of the synthetic strategies enabling the exact structural elucidation of (-)-mucosin (1) is also presented.


Assuntos
Produtos Biológicos , Compostos Bicíclicos Heterocíclicos com Pontes , Produtos Biológicos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estereoisomerismo
3.
Eur J Immunol ; 52(9): 1441-1451, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775327

RESUMO

Natural Killer (NK) cells are important innate lymphocytes for effective immune responses against intracellular pathogens and tumors. CD56 is a well-known marker for human NK cells, but there is very limited information about a functional role of this surface receptor. Here, we show that engagement of CD56 can induce NK cell activation resulting in degranulation, IFN-γ secretion and morphological changes, making CD56 a potential co-activating receptor in NK cells. Interestingly, this effect was only observed in cytokine pre-activated and not in freshly isolated human NK cells, demonstrating that NK cell reactivity upon CD56 engagement was dependent on cytokine stimulation. Inhibition of Syk, PI3K, Erk, and src-family-kinases impaired CD56-mediated NK cell stimulation. Finally, we used CRISPR/Cas9 to delete CD56 from primary human NK cells. While this abolished the stimulatory effect of CD56 on pre-activated NK cells, the cytotoxic activity of NK cells against several tumor target cells was not affected by the absence of CD56. This demonstrates that the stimulating effect of CD56 on pre-activated NK cells does not have a major impact on their cytotoxic activity, but it may contribute to the function of CD56 as a fungal recognition receptor and in the NK cell developmental synapse.


Assuntos
Antígeno CD56 , Citocinas , Células Matadoras Naturais , Antígeno CD56/imunologia , Citocinas/imunologia , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária
4.
Cancer Immunol Immunother ; 72(6): 1429-1444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36460868

RESUMO

Natural killer (NK) cells play a crucial role in the anti-tumor transaction through cytolytic activity with the help of proportionate expression of their activating receptors (ARs) and inhibitory receptors (IRs). The proliferation, differentiation, and effector's functions of NK cells were affected and regulated by CD4+CD25+ regulatory T (Treg) cells through the NKG2D receptor expressed on NK cells. It has not yet been established whether Treg cells also affects the expression and functions of other receptors of NK cell. Moreover, the effect of cyclophosphamide (CYP) treatment on the expression and functions of AR and IR receptors of NK cells regulated by Treg cells during cancer progression is not clearly understood. Therefore, we have used the metronomic dose of CYP and anti-CD25 and anti-TGF-ß to inhibit the effects of Treg cells in DL-induced tumor microenvironment and analyze the expression of ARs and IRs on NK cells and the FoxP3 level on Treg cells. It was observed that treatment of CYP and blocking antibodies not only affects the functions of tumor-associated NK cells (TANK cells) by modulating the expression of ARs and IRs in DL-induced tumor microenvironment, but also downregulates the functions of Treg cells. The findings of our study supported and suggested that the use of CYP in combination with other therapeutic approaches will effectively reduce tumor growth directly and/or indirectly by modulating the NK cell-mediated immune response of the host.


Assuntos
Células Matadoras Naturais , Linfoma , Humanos , Linfoma/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Immunol Cell Biol ; 101(8): 684-686, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226854

RESUMO

In a recent article, Sen Santara et al. demonstrated that the activating natural killer (NK) cell receptor NKp46 binds to externalized calreticulin (ecto-CRT), leading to NK cell degranulation and target cell killing. They show that endoplasmic reticulum stress-induced ecto-CRT serves as a danger-associated molecular pattern, helping NK cells identify and eliminate infected, malignant, stressed or senescent cells.


Assuntos
Calreticulina , Células Matadoras Naturais , Calreticulina/metabolismo , Células Matadoras Naturais/metabolismo , Apoptose
6.
Exp Dermatol ; 32(4): 469-478, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36541108

RESUMO

Human skin equivalents (HSEs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). Although HSEs resemble NHS very closely, the barrier located in the stratum corneum (SC) is impaired. This is caused by an altered lipid composition in the SC of HSEs compared with NHS. One of the most pronounced changes in this lipid composition is a high level of monounsaturation. One key enzyme in this change is stearoyl-CoA desaturase-1 (SCD1), which catalyses the monounsaturation of lipids. In order to normalize the lipid composition, we aimed to target a group of nuclear receptors that are important regulators in the lipid synthesis. This group of receptors are known as the peroxisome proliferating activating receptors (PPARs). By (de)activating each isoform (PPAR-α, PPAR-δ and PPAR-γ), the PPAR isoforms may have normalizing effects on the lipid composition. In addition, another PPAR-α agonist Wy14643 was included as this supplement demonstrated normalizing effects in the lipid composition in a more recent study. After PPAR (ant)agonists supplementation, the mRNA of downstream targets, lipid synthesis genes and lipid composition were investigated. The PPAR downstream targets were activated, indicating that the supplements reached the keratinocytes to trigger their effect. However, minimal impact was observed on the lipid composition after PPAR isoform (de) activation. Only the highest concentration Wy14643 resulted in strong, but negative effects on CER composition. Although the novel tested modifications did not result in an improvement, more insight is gained on the nuclear receptors PPARs and their effects on the lipid barrier in full-thickness skin models.


Assuntos
Queratinócitos , Pele , Humanos , PPAR alfa , PPAR gama , Lipídeos
7.
Clin Exp Immunol ; 207(2): 227-236, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020841

RESUMO

Relatively little is known about the ex vivo frequency and phenotype of the Plasmodium falciparum-specific CD4+ T-cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1∗11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in 10 patients with acute malaria. EXP1-specific CD4+ T cells were detectable in 9 out of 10 (90%) malaria patients expressing the HLA-DRB1∗11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57), and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.


Assuntos
Linfócitos T CD4-Positivos , Malária Falciparum , Linfócitos T CD4-Positivos/metabolismo , Subtipos Sorológicos de HLA-DR , Humanos , Plasmodium falciparum , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo
8.
Eur J Immunol ; 50(5): 656-665, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027754

RESUMO

Natural Killer (NK) cell responses are regulated by a variety of different surface receptors. While we can determine the overall positive or negative effect of a given receptor on NK cell functions, investigating NK cell regulation in a quantitative way is challenging. To quantitatively investigate individual receptors for their effect on NK cell activation, we chose to functionalize latex beads that have approximately the same size as lymphocytes with defined amounts of specific antibodies directed against distinct activating receptors. This enabled us to investigate NK cell reactivity in a defined, clean, and controllable system. Only CD16 and NKp30 could activate the degranulation of resting human NK cells. CD16, NKG2D, NKp30, NKp44, and NKp46 were able to activate cultured NK cells. NK cell activation resulted in the induction of polyfunctional cells that degranulated and produced IFN-γ and MIP-1ß. Interestingly, polyfunctional NK cells were only induced by triggering ITAM-coupled receptors. NKp44 showed a very sensitive response pattern, where a small increase in receptor stimulation caused maximal NK cell activity. In contrast, stimulation of 2B4 induced very little NK cell degranulation, while providing sufficient signal for NK cell adhesion. Our data demonstrate that activating receptors differ in their effectiveness to stimulate NK cells.


Assuntos
Anticorpos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos/química , Adesão Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Microesferas , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/genética , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Ligação Proteica , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais
9.
Clin Exp Immunol ; 206(2): 173-183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309834

RESUMO

Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with T cell dysregulation. The lymphocyte-activation gene (LAG)-3 is one of the regulatory receptors expressed on T cells in a soluble form. LAG-3 expression on T cells was analyzed in vitro in PsA patients with minimal disease activity (MDA), active disease (non-MDA) and healthy controls. In cultured in-vitro peripheral blood mononuclear cells (PBMCs), LAG-3 expression on CD4+ T cells was similar in both MDA PsA patients (7.5 ± 0.9) (n = 14) and healthy controls (7.8 ± 0.6) (n = 15), but significantly lower in non-MDA PsA patients (3.1 ± 0.3) (n = 13) (p < 0.0001). An inverse correlation between PsA clinical disease activity and %CD4+ LAG-3+ T cells in vitro was observed (composite psoriatic disease activity index r = -0.47, p < 0.02 and psoriatic arthritis disease activity score, r = -0.51, p < 0.008). In-vitro co-culture of CD4+ T cells with anti-tumor necrosis factor (TNF) or anti-interleukin (IL)-17A had no effect on LAG-3+ expression in MDA PsA patients and healthy controls. In non-MDA patients, anti-TNF, but not anti-IL-17A, restored the %CD4+ LAG-3+ T cells (7.9 ± 0.9 and 3.2 ± 0.4, respectively) (p < 0.0004). Lower soluble LAG-3 levels were found in sera of naive to biological PsA patients (n = 39) compared to healthy controls (n = 35) (p < 0.03). Impaired LAG-3 on CD4+ T cells may reflect active PsA disease state. Anti-TNFs have potency to up-regulate the CD4+ LAG-3+ T cells in vitro.


Assuntos
Antígenos CD/imunologia , Artrite Psoriásica/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-17/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Artrite Psoriásica/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
10.
Cell Biol Int ; 45(1): 2-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32910474

RESUMO

One of the most common diseases in the present era is cancer. The common treatment methods used to control cancer include surgery, chemotherapy, and radiotherapy. Despite progress in the treatment of cancers, there still is no definite therapeutic approach. Among the currently proposed strategies, immunotherapy is a new approach that can provide better outcomes compared with existing therapies. Employing natural killer (NK) cells is one of the means of immunotherapy. As innate lymphocytes, NK cells are capable of rapidly responding to cancer cells without being sensitized or restricted to the cognate antigen in advance, as compared to T cells that are tumor antigen-specific. Latest insights into the biology of NK cells have clarified the underlying molecular mechanisms of NK cell maturation and differentiation, as well as controlling their effector functions through the investigation of the ligands and receptors engaged in recognizing cancer cells by NK cells. Elucidating the fact that NK cells recognize cancer cells could similarly show the mechanism through which cancer cells possibly avoid NK cell-dependent immune surveillance. Additionally, the expectations for novel immunotherapies by targeting NK cells have increased through the latest clinical outcomes of T-cell-targeted cancer immunotherapy. For this emerging method, researchers are still attempting to develop protocols for conferring the best proliferation and expansion medium, activation pathways, utilization dosage, transferring methods, as well as reducing possible side effects in cancer therapy. This study reviews the NK cells, their proliferation and expansion methods, and their recent applications in cancer immunotherapy.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Humanos , Evasão da Resposta Imune/imunologia , Neoplasias/patologia , Receptores de Antígenos Quiméricos/metabolismo
11.
Immunology ; 156(3): 270-276, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30460991

RESUMO

CD5 and CD6 are related surface receptors that limit and promote T-cell responses. Co-stimulatory effects of CD6 depend on binding a cell surface ligand, CD166, and recruitment of the intracellular adaptor proteins GADS and SLP-76 by C-terminal phosphotyrosines. We have continued to identify interactions of CD5 and CD6 to understand their roles in T-cell activation. In a screen to identify binding partners for peptides containing a cytoplasmic sequence, SDSDY conserved between CD5 and CD6, we identified ezrin radixin moesin (ERM) proteins, which link plasma membrane proteins to actin. Purified radixin FERM domain bound directly to CD5 and CD6 SDSDY peptides in a phosphorylation-dependent manner (KD = 0·5-2 µm) at 37°. In human T-cell blasts, mutation of the CD6 SDSDY sequence enhanced CD69 expression in response to CD3 monoclonal antibody. In this proximal readout, interactions of the SDSDY sequence were dominant compared with the C-terminal tyrosines of CD6. In contrast, in a more downstream readout, interleukin-2 expression, in response to immobilized CD3 and CD6 monoclonal antibodies, the C-terminal tyrosines were dominant. The data suggest that varying functional effects of CD6 and potentially CD5 depend on interactions of different cytoplasmic regions with the cytoskeleton and alter depending on the stimuli.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos CD5/imunologia , Proteínas de Ligação a DNA/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Actinas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Membrana Celular/imunologia , Citoplasma/imunologia , Citoesqueleto/imunologia , Humanos , Fosforilação/imunologia , Ratos , Tirosina/imunologia
12.
Immunology ; 157(3): 232-247, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087644

RESUMO

Regulatory T (Treg) cells play a crucial role in maintaining self-tolerance and resolution of immune responses by employing multifaceted immunoregulatory mechanisms. However, Treg cells readily infiltrate into the tumor microenvironment (TME) and dampen anti-tumor immune responses, thereby becoming a barrier to effective cancer immunotherapy. There has been a substantial expansion in the development of novel immunotherapies targeting various inhibitory receptors (IRs), such as CTLA4, PD1 and LAG3, but these approaches have mechanistically focused on the elicitation of anti-tumor responses. However, enhanced inflammation in the TME could also play a detrimental role by facilitating the recruitment, stability and function of Treg cells by up-regulating chemokines that promote Treg cell migration, and/or increasing inhibitory cytokine production. Furthermore, IR blockade may enhance Treg cell function and survival, thereby serving as a resistance mechanism against effective immunotherapy. Given that Treg cells are comprised of functionally and phenotypically heterogeneous sub-populations that may alter their characteristics in a context-dependent manner, it is critical to identify unique molecular pathways that are preferentially used by intratumoral Treg cells. In this review, we discuss markers that serve to identify certain Treg cell subsets, distinguished by chemokine receptors, IRs and cytokines that facilitate their migration, stability and function in the TME. We also discuss how these Treg cell subsets correlate with the clinical outcome of patients with various types of cancer and how they may serve as potential TME-specific targets for novel cancer immunotherapies.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Microambiente Tumoral
13.
Immunogenetics ; 71(4): 321-333, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30535636

RESUMO

The CD94 receptor, expressed on natural killer (NK) and CD8+ T cells, is known as a relatively non-polymorphic receptor with orthologues in humans, other primates, cattle, and rodents. In the house mouse (Mus musculus), a single allele is highly conserved among laboratory strains, and reports of allelic variation in lab- or wild-living mice are lacking, except for deficiency in one lab strain (DBA/2J). The non-classical MHC-I molecule Qa-1b is the ligand for mouse CD94/NKG2A, presenting alternative non-americ fragment of leader peptides (Qa-1 determinant modifier (Qdm)) from classical MHC-I molecules. Here, we report a novel allele identified in free-living house mice captured in Norway, living among individuals carrying the canonical Cd94 allele. The novel Cd94LocA allele encodes 12 amino acid substitutions in the extracellular lectin-like domain. Flow cytometric analysis of primary NK cells and transfected cells indicates that the substitutions prevent binding of CD94 mAb and Qa-1b/Qdm tetramers. Our data further indicate correlation of Cd94 polymorphism with the two major subspecies of house mice in Europe. Together, these findings suggest that the Cd94LocA/NKG2A heterodimeric receptor is widely expressed among M. musculus subspecies musculus, with ligand-binding properties different from mice of subspecies domesticus, such as the C57BL/6 strain.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Subfamília C de Receptores Semelhantes a Lectina de Células NK/química , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Noruega , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
14.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791364

RESUMO

The crosstalk between cancer cells and host cells is a crucial prerequisite for tumor growth and progression. The cells from both the innate and adaptive immune systems enter into a perverse relationship with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Epithelial ovarian cancer (EOC), the most lethal of all gynecological malignancies, is characterized by a unique TME that paves the way to the formation of metastasis and mediates therapy resistance through the deregulation of immune surveillance. A characteristic feature of the ovarian cancer TME is the ascites/peritoneal fluid, a malignancy-associated effusion occurring at more advanced stages, which enables the peritoneal dissemination of tumor cells and the formation of metastasis. The standard therapy for EOC involves a combination of debulking surgery and platinum-based chemotherapy. However, most patients experience disease recurrence. New therapeutic strategies are needed to improve the prognosis of patients with advanced EOC. Harnessing the body's natural immune defenses against cancer in the form of immunotherapy is emerging as an innovative treatment strategy. NK cells have attracted attention as a promising cancer immunotherapeutic target due to their ability to kill malignant cells and avoid healthy cells. Here, we will discuss the recent advances in the clinical application of NK cell immunotherapy in EOC.


Assuntos
Imunomodulação , Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Biomarcadores Tumorais , Terapia Combinada , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Terapia de Alvo Molecular , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Evasão Tumoral/imunologia
15.
Immunology ; 154(3): 418-433, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29315553

RESUMO

T-cell immunoglobulin and mucin domain 3 (Tim-3) is a surface receptor expressed by T helper type 1 (Th1) effector CD4 T cells, which are critical for defence against intracellular pathogens and have been implicated in autoimmune disease. Previous studies showed that Tim-3 expression makes Th1 cells more susceptible to apoptosis and also marks functionally impaired T cells that arise due to chronic stimulation. However, other studies suggested that Tim-3-expressing Th1 cells do not always have these properties. To further define the relationship between Tim-3 and Th1 cell function, we analysed the characteristics of Th1 cells that expressed Tim-3 in response to brief stimulation in vitro or an acute viral infection in vivo. As expected, cultured CD4 T cells began expressing Tim-3 during Th1 differentiation and secondary stimulation generated Tim-3- and Tim-3+ fractions that were separated and further analysed. When injected into naive mice, Tim-3+ cells down-regulated Tim-3 and survived equally well compared with Tim-3- cells. Further, Tim-3- and Tim-3+ Th1 cells had similar functional responses when transferred into naive mice that were subsequently infected with lymphocytic choriomeningitis virus (LCMV). Cultured Th1 cells that expressed Tim-3 following T-cell receptor stimulation had a greater capacity to express signature Th1 cytokines than their Tim-3- counterparts and showed differential expression of genes that regulate CD4 T-cell function. Consistent with these findings, Tim-3+ Th1 cells generated in response to LCMV infection displayed augmented effector function relative to Tim-3- cells. These results suggest that Tim-3 expression by Th1 cells responding to acute stimulation can mark cells that are functionally competent and have an augmented ability to produce cytokines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Receptor Celular 2 do Vírus da Hepatite A/genética , Imunomodulação , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Transferência Adotiva , Animais , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunofenotipagem , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo
16.
Immunology ; 152(2): 185-194, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28628194

RESUMO

T follicular helper (Tfh) cells are a distinct type of CD4+ T cell specialized in providing help to B cells during the germinal centre (GC) reaction. As such, they are critical determinants of the quality of an antibody response following antigen challenge. Excessive production of Tfh cells can result in autoimmunity whereas too few can result in inadequate protection from infection. Hence, their differentiation and maintenance must be tightly regulated to ensure appropriate but limited help to B cells. Unlike the majority of other CD4+ T-cell subsets, Tfh cell differentiation occurs in three phases defined by their anatomical location. During each phase of differentiation the emerging Tfh cells express distinct patterns of co-receptors, which work together with the T-cell receptor (TCR) to drive Tfh differentiation. These signals provided by both TCR and co-receptors during Tfh differentiation alter proliferation, survival, metabolism, cytokine production and transcription factor expression. This review will discuss how engagement of TCR and co-receptors work together to shape the formation and function of Tfh cells.


Assuntos
Diferenciação Celular , Centro Germinativo/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Formação de Anticorpos , Antígenos/imunologia , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Humanos , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
17.
Clin Exp Immunol ; 187(2): 284-293, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27727448

RESUMO

Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+ ) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined. Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dim CD16+ NK cells and CD56bright CD16dim/- NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2-aminoethoxydiphenyl borate (2APB) and ionomycin. Unstimulated CD56bright CD16dim/- NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS-stimulated CD56bright CD16dim/- NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dim CD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS-stimulated CD56dim CD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux. Furthermore, TG-stimulated CD56dim CD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.


Assuntos
Síndrome de Fadiga Crônica/genética , Células Matadoras Naturais/fisiologia , Canais de Cátion TRPM/genética , Adulto , Antígeno CD56/metabolismo , Sinalização do Cálcio , Citotoxicidade Imunológica , Feminino , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade , Pregnenolona/metabolismo , Receptores de IgG/metabolismo , Tapsigargina/metabolismo
18.
Clin Exp Immunol ; 187(1): 4-5, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27690328

RESUMO

Immunosurveillance requires the migration of lymphocytes and their activation to induce proliferation and effector function. Effective immunity requires an optimal supply of nutrients to lymphocytes. Cells contain nutrient sensing apparatus such as adenosine 5'-monophosphate-activated protein kinase (AMPK) that surveys intracellular ATP levels. Immunity declines during ageing and one possibility is that the energy balance may be altered in old lymphocytes. This paper summarizes recent data identifying a convergence of senescence and nutrient signalling pathways in lymphocytes that inhibit both T cell and natural killer (NK) cell function during ageing. Significantly, these pathways can be inhibited to enhance the activity of these cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/imunologia , Metabolismo Energético , Vigilância Imunológica , Células Matadoras Naturais/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Ativação Linfocitária
19.
Int J Mol Sci ; 18(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513532

RESUMO

Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites' contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.


Assuntos
Ascite/imunologia , Ascite/patologia , Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Idoso , Biomarcadores , Carcinoma Epitelial do Ovário , Estudos de Casos e Controles , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia
20.
Cent Eur J Immunol ; 42(4): 347-353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29472811

RESUMO

INTRODUCTION: Periodontal diseases are highly prevalent inflammatory, multifactorial diseases. Smoking is one of the most important environmental risk factors for the development and severity of periodontal disease. Killer cell immunoglobulin-like receptors (KIRs) are members of the immunoglobulin (Ig) superfamily and play an essential role in the regulation of NK cell activity, allowing natural killer (NK) cells to sense and respond to human leukocyte antigen (HLA) class I. The aim of this study was to evaluate the influence of KIR gene presence/absence polymorphisms on the development of periodontal disease in smokers and non-smokers. MATERIAL AND METHODS: This study enrolled 400 Caucasian subjects (age range 25-69 years) from the West Pomeranian region of Poland. The subjects were categorized into four subgroups (smoking and non-smoking patients with periodontal disease; smoking and non-smoking subjects without periodontal disease - control subjects). RESULTS: The differences of KIR gene frequencies between non-smoking patients and non-smoking control subjects as well as smoking patients and control subjects were not statistically significant. In multivariate regression analysis advanced age of patients and smoking were independent factors associated with increased frequency of periodontal disease. CONCLUSIONS: The results of this study suggest that the main factor associated with increased risk of periodontal disease is smoking, whereas KIR presence/absence polymorphism is not a significant factor involved in the pathogenesis of periodontal disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA