Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28585313

RESUMO

Herein a facile method is reported to prepare polymer gels based on the formation of acylhydrazone bond under mild conditions. A pillar[5]arene derivative appended with ten hydrazide groups provides multiple sites for the reaction with the aldehyde groups of bis(p-formylphenyl) sebacate in the presence of a small amount of HCl as the catalyst in dimethyl sulfoxide (DMSO), producing transparent polymer organogels. The mechanical properties of gels can be easily tuned by the molar ratio of the reactant compounds. After solvent exchange from DMSO to water, translucent polymer hydrogels with dramatically enhanced strength and stiffness are obtained. The tensile breaking stress and Young's modulus of hydrogels are 20-60 and 1.2-2.7 MPa, respectively, 100 and 20 times those of the corresponding organogels. These robust hydrogels with ultrahigh stiffness should find applications such as in load-bearing artificial organs. This work should merit designing functional materials using other macrocycles.


Assuntos
Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Hidrazinas/química , Hidrogéis/química , Compostos de Amônio Quaternário/química , Bases de Schiff/química , Calixarenos , Catálise , Ácidos Decanoicos/síntese química , Ácidos Dicarboxílicos/síntese química , Dimetil Sulfóxido/química , Módulo de Elasticidade , Hidrogéis/síntese química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura
2.
ACS Appl Mater Interfaces ; 15(17): 20761-20773, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075321

RESUMO

Trade-off of high-strength and dynamic crosslinking of hydrogels remains an enormous challenge. Motivated by the self-healing property of biological tissues, the strategy of combining multiple dynamic bond mechanisms and a polysaccharide network is proposed to fabricate biomimetic hydrogels with sufficient mechanical strength, injectability, biodegradability, and self-healing property for bone reconstruction engineering. Stable acylhydrazone bonds endowed hydrogels with robust mechanical strength (>10 kPa). The integration of dynamic imine bonds and acylhydrazone bonds optimized the reversible characteristic to protect the cell during the injection and mimicked ECM microenvironment for cell differentiation as well as rapid adapting bone defect area. Furthermore, due to the slow enzymatic hydrolysis kinetics of chitosan and the self-healing properties of resulting networks, hydrogels exhibited a satisfactory biodegradation period (>8 weeks) that highly matches with bone regeneration. Additionally, rBMSC-laden hydrogels exhibited splendid osteogenic induction and bone reconstruction without prefabrication scaffolds and incubation, demonstrating tremendous potential for clinical application. This work proposes an efficient strategy for the construction of a low-cost multifunctional hydrogel, making polysaccharide-based hydrogels as the optimal carrier for enabling cellular functions in bone repair.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Quitina , Polissacarídeos , Regeneração Óssea
3.
Acta Biomater ; 141: 102-113, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990813

RESUMO

Tumor local chemotherapy employing injectable hydrogel reservoirs is a promising platform to achieve precise drug administration. However, balanced injectability, pH-responsiveness and long-term hydrolysis resistance of self-healing hydrogels remain appealing challenges. Herein, a modular preassembly strategy combining host-guest interactions with dynamic acylhydrazone bonds, was exploited to fabricate injectable cellulose-based hydrogels (CAAs) dressed with self-healing properties, pH-responsiveness and hydrolytic degradation resistance. Attributed to the host-guest interaction between ß-cyclodextrin (CD) and 1-adamantane (AD), the hydrogels exhibited injectability, self-healing properties (healing efficiency of 97.5%) and rapid recovery (< 10 min) without external stimuli in physiological environment. Moreover, the hydrogels equipped with dynamic acylhydrazone linkages underwent slow hydrolytic degradation (> 30 days) and pH-responsive behavior, endowing the hydrogels with precise spatiotemporal drug release administration. The in vivo application of CAA as a carrier was studied using doxorubicin (DOX) model drug, and the results shows that using CAA as DOX carrier not only greatly enhances the anti-tumor efficacy of DOX, but also reduced the side effects of DOX. STATEMENT OF SIGNIFICANCE: With the preassemble approach combining host-guest interactions with dynamic acylhydrazone bonds, this work demonstrated a multi-functional self-healing hydrogel as drug carrier developed by using natural polysaccharides, which offers a new avenue for the high-value utilization of biomass. The strategy demonstrated in the present work may also supply a pathway for the preparation and regulation of hydrogels as intelligent biomedicine materials.


Assuntos
Hidrogéis , Neoplasias , Celulose/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Humanos , Hidrogéis/química , Neoplasias/tratamento farmacológico
4.
Carbohydr Polym ; 256: 117574, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483069

RESUMO

To meet the demands of various therapeutic tasks, injectable hydrogels with tunable mechanical properties and degradability are highly desired. Herein, we developed an injectable chitin hydrogel system with well-manipulated mechanical properties and degradability through dynamic acylhydrazone crosslinking catalyzed by 4-amino-DL-phenylalanine (Phe-NH2). The mechanical properties and degradability of the hydrogels could be easily adjusted by varying the solid content, while their gelation time could be maintained at a constant level (∼130 s) by altering Phe-NH2 content, thereby ensuring the good injectability of hydrogels. Moreover, the chitin hydrogels showed excellent self-healing capacity with a healing efficiency up to 95 %. Owing to their superior biocompatibility and biodegradability, the chitin hydrogels could support the proliferation and multi-potent differentiations of rat bone marrow-derived stem cells, serving as a beneficial 3D scaffold for stem cell encapsulation and delivery. This work provides a promising injectable delivery vehicle of therapeutic drugs or cells for tissue regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Quitina/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Hidrazonas/química , Imageamento Tridimensional , Pós , Ratos , Ratos Wistar , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico
5.
Carbohydr Polym ; 273: 118547, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560959

RESUMO

To meet the rising demand of injectable hydrogels with self-healing, robustness and biocompatibility for biomedical engineering, the reversible ketoester-type acylhydrazone linkages was used for the fabrication of novel cellulose-based hydrogel. The ketoester-type acylhydrazone bond exchanged rapidly, endowing the hydrogels with highly efficient self-healing performance without any external stimuli under physiological environment, which was hardly achieved with the widely used arylhydrozone bond. The dynamic hydrogels exhibited tunable mechanical property, pH responsiveness, injectability and biocompatibility, demonstrating immense applications prospect for various biomedicines, such as drug and cell delivery. The pH-responsive controlled release of model drug doxorubicin (DOX) loaded in the hydrogel was demonstrated. In addition, benefitting from the excellent biocompatibility and the reversible ketoester-type acylhydrazone bonds, cells were encapsulated in the hydrogels as 3D carrier. The covalent adaptable network intensified injectability of cell-laden hydrogels and improved the long-lasting viability for cell culture, showing great potential in the biomedical field.


Assuntos
Celulose/química , Sistemas de Liberação de Medicamentos/métodos , Hidrazonas/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Injeções/métodos , Camundongos
6.
ACS Appl Mater Interfaces ; 11(42): 39192-39200, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31564097

RESUMO

It has been widely reported that cellulose nanocrystals (CNCs) demonstrate a special structural color, which stems from chiral nematic domains. Herein, the humidity and heat dual response nanocomposite films with multilayered helical structure were prepared by self-assembling of CNCs and hydrazone groups modified poly(N-isopropylacrylamide) (PNIPAM) copolymers. Furthermore, glutaraldehyde was involved to act as a chemical linker to improve cyclic stability by forming acylhydrazone bonds. The structural color of the films could be easily regulated by humidity, heat, or the content of modified PNIPAM copolymers. The absorption of water in higher humidity led to volume expansion of the resin, resulting in a red shift for up to 145 nm. In contrast, the resin shrank under the temperature above the lower critical solution temperature of PNIPAM, leading to a blue shift for up to 87 nm. It was notable that the change of color can be easily captured by the naked eyes. Moreover, the films exhibited excellent stability and cyclicity in response to either vapor or liquid water due to the chemical linking between CNCs and resins. The as-prepared CNCs/PNIPAM nanocomposite films with humidity or heat responsibilities are promising in stimuli-responsive sensors, printing industry, surface decorations, and so forth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA