RESUMO
BACKGROUND: The aim of the study was to demonstrate the feasibility of integrating navigated transcranial magnetic stimulation (nTMS) in preoperative gamma knife radiosurgery (GKRS) planning of motor eloquent brain tumors. CASE DESCRIPTION: The first case was a 53-year-old female patient with metastatic breast cancer who developed focal epileptic seizures and weakness of the left hand. The magnetic resonance imaging (MRI) scan demonstrated a 30 mm metastasis neighboring the right precentral gyrus and central sulcus. The lesion was treated with adaptive hypofractionated GKRS following preoperative nTMS-based motor mapping. Subsequent follow-up imaging (up to 12 months) revealed next to complete tumor ablation without toxicity. The second case involved a previously healthy 73-year-old male who similarly developed new left-handed weakness. A subsequent MRI demonstrated a 26 mm metastatic lesion, located in the right postcentral gyrus and 5 mm from the hand motor area. The extracranial screening revealed a likely primary lung adenocarcinoma. The patient underwent preoperative nTMS motor mapping prior to treatment. Perilesional edema was noted 6 months postradiosurgery; nevertheless, long- term tumor control was demonstrated. Both patients experienced motor function normalization shortly after treatment, continuing to final follow-up. CONCLUSION: Integrating preoperative nTMS motor mapping in treatment planning allowed us to reduce dose distributions to perilesional motor fibers while achieving salvage of motor function, lasting seizure freedom, and tumor control. These initial data along with our review of the available literature suggest that nTMS can be of significant assistance in brain radiosurgery. Prospective studies including larger number of patients are still warranted.
RESUMO
BACKGROUND: Approximately 20-30% of all intracranial metastases are located in the posterior fossa. The clinical evolution hinges on factors such as tumor growth dynamics, local topographic conditions, performance status, and prompt intervention. Fourth ventricle (V4) compression with secondary life-threatening obstructive hydrocephalus remains a major concern, often requiring acute surgical intervention. We have previously reported on the application of adaptive hypofractionated Gamma Knife Radiosurgery in the acute management of critically located metastases, a technique known to us as rapid rescue radiosurgery (3R). We report the results of 3R in the management of posterior fossa lesions and ensuing V4 decompression. CASE DESCRIPTIONS: Four patients with V4 compression due to posterior fossa metastases were treated with 3R by three separate gamma knife radiosurgical sessions (GKRS) over a period of seven days. Mean V4 volume was 1.02 cm3 at GKRS 1, 1.13 cm3 at GKRS 2, and 1.12 cm3 at GKRS 3. Mean tumor volume during the week of treatment was 10 cm3 at both GKRS 1 and 2 and 9 cm3 at GKRS 3. On average, we achieved a tumor volume reduction of 52% and a V4 size increase of 64% at the first follow-up (4 weeks after GKRS 3). Long-term follow-up showed continued local tumor control, stable V4 volume, and absence of hydrocephalus. CONCLUSION: For this series, 3R was effective in terms of rapid tumor ablation, V4 decompression, and limited radiation-induced toxicity. This surgical procedure may become an additional tool in the management of intractable posterior fossa metastasis with V4 compression.