Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Biopolymers ; : e23619, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115118

RESUMO

This research explores the integration of corn husk nanocellulose (CHNc) and pineapple leaf nanocellulose (PLNc) as reinforcing agents in a carboxymethyl cellulose-based film derived from durian husk (CMCDH). Through a solvent-casting method, composite films were fabricated with varying nanocellulose contents (15, 30, and 45 wt%). Analysis using Fourier transform infrared spectroscopy and x-ray diffraction confirmed the effectiveness of alkaline and bleaching treatments in eliminating noncellulosic components. Transmission electron microscopy image revealed the rod-like morphology of CHNc and PLNc, with dimensions approximately 206.5 × 7.2 nm and 150.7 × 6.5 nm, respectively. The inclusion of nanocellulose decreased the transparency of CMCDH films while enhancing their tensile strength, thermal stability, and water vapor transmission rate. Notably, CMCDH/PLNc(30%) exhibited the highest tensile strength at 5.06 ± 0.83 MPa, representing a remarkable 220% increase compared to CMCDH biofilm. Thermogravimetric analysis and differential scanning calorimeter results indicated that nanocellulose incorporation delayed the film's decomposition temperature by approximately 10°C. Moreover, CMCDH/PLNc(30%) demonstrated the lowest water vapor transmission rate, marking a 20% improvement. However, the film's properties were compromised at the highest nanocellulose content (45 wt%) due to observed fiber aggregation, as revealed by scanning electron microscopy analysis.

2.
Environ Res ; 247: 118101, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220080

RESUMO

Anaerobic digestion of agricultural waste can contribute to the European renewable energy needs. The 71% of the 20,000 anaerobic digestion plants in operation already uses these agro-waste as feedstock; part of these plants can be converted into two stage processes to produce hydrogen and methane in the same plant. Biomethane enriched in hydrogen can replace natural gas in grids while contributing to the sector decarbonisation. Straw is the most abundant agricultural residue (156 Mt/y) and its conventional final fate is uncontrolled soil disposal, landfilling, incineration or, in the best cases, composting. The present research work focuses on the fermentation of spent mushroom bed, an agricultural lignocellulosic byproduct, composed mainly from wheat straw. The substrate has been characterized and semi-continuous tests were performed evaluating the effect of the hydraulic retention time on hydrogen and volatile fatty acids production. It was found that all the tests confirmed the feasibility of the process even on this lignocellulosic substrate, and also, it was identified HRT 4.0 d as the best option to optimize the productivity of volatile fatty acids (17.09 gCODVFAs/(KgVS*d)), and HRT 6.0 d for hydrogen (7.98 LH2/(KgVS*d)). The fermentation effluent was used in biomethanation potential tests to evaluate how this process affects a subsequent digestion phase, reporting an increase in the energetical feedstock exploitation up to 30%.


Assuntos
Ácidos Graxos Voláteis , Hidrogênio , Anaerobiose , Fermentação , Metano , Reatores Biológicos , Biocombustíveis
3.
Environ Res ; 242: 117741, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007075

RESUMO

Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.


Assuntos
Oryza , Gases , Temperatura , Biomassa , Índia
4.
Environ Res ; 261: 119760, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39121700

RESUMO

Aquaculture farming generates a significant amount of wastewater, which has prompted the development of creative bioprocesses to improve wastewater treatment and bioresource recovery. One promising method of achieving these aims is to directly recycle pollutants into microbe-rice bran complexes, which is an economical and efficient technique for wastewater treatment that uses synergetic interactions between algae and bacteria. This study explores novel bioaugmentation as a promising strategy for efficiently forming microbial-rice bran complexes in unsterilized aquaculture wastewater enriched with agricultural residues (molasses and rice bran). Results found that rice bran serves a dual role, acting as both an alternative nutrient source and a biomass support for microalgae and bacteria. Co-bioaugmentation, involving the addition of probiotic bacteria (Bacillus syntrophic consortia) and microalgae consortiums (Tetradesmus dimorphus and Chlorella sp.) to an existing microbial community, led to a remarkable 5-fold increase in microbial-rice bran complex yields compared to the non-bioaugmentation approach. This method provided the most compact biofloc structure (0.50 g/L) and a large particle diameter (404 µm). Co-bioaugmentation significantly boosts the synthesis of extracellular polymeric substances, comprising proteins at 6.5 g/L and polysaccharides at 0.28 g/L. Chlorophyta, comprising 80% of the total algal phylum, and Proteobacteria, comprising 51% of the total bacterial phylum, are emerging as dominant species. These microorganisms play a crucial role in waste and wastewater treatment, as well as in the formation of microbial-rice bran complexes that could serve as an alternative aquaculture feed. This approach prompted changes in both microbial community structure and nutrient cycling processes, as well as water quality. These findings provide valuable insights into the transformative effects of bioaugmentation on the development of microbial-rice bran complexes, offering potential applications in bioprocesses for waste and wastewater management.


Assuntos
Aquicultura , Microalgas , Oryza , Probióticos , Águas Residuárias , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Aquicultura/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento
5.
Microb Cell Fact ; 22(1): 93, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143012

RESUMO

BACKGROUND: Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS: Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION: Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.


Assuntos
Prolil Oligopeptidases , Trichoderma , Prolil Oligopeptidases/metabolismo , Aspergillus niger/metabolismo , Cerveja , Celulose/metabolismo , Fermentação , Trichoderma/metabolismo
6.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615534

RESUMO

Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.


Assuntos
Alimentos , Resíduos Industriais , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Agricultura
7.
Environ Res ; 214(Pt 3): 114022, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35977589

RESUMO

Adsorption is the most promising technology used in the gas separation and purification process. The key success of this technology relies on the selection of an adsorbent. Activated carbon and zeolites are the most commonly used adsorbents in the separation of particular gas from gaseous mixtures. Activated carbon deriving from fossil and biomass-based resources has wide pore size distribution and thereby results in lower selectivity. Whereas, zeolites synthesized from natural minerals are expensive which increases the cost of the purification process. Taking this into concern, the quest for synthesizing low-cost and effective adsorbents has gained greater attention in recent years. Carbon Molecular Sieves (CMSs), are considered as an attractive alternative to replace the conventional adsorbents. Furthermore, CMSs exhibit higher selectivity and adsorption capacity, due to their narrow micropore size distribution (0.3-0.5 nm). CMSs are synthesized from any organic carbonaceous precursor with low inorganic content. Since most of the agricultural residues fall under this category, they can be used as a feedstock for CMSs production. The synthesis of CMSs involves three stages: carbonization, activation, and pore modification. In this review, physicochemical characteristics of various agricultural residues, the effects of carbonization process parameters, activation methods, and pore modification techniques adopted for producing CMSs are comprehensively discussed. The effect of deposition temperature, time, and flow rate of depositing agent on pore characteristics of CMSs is briefed. The prospects and challenges in CMSs production are also studied. The insights in this review provide guidelines for synthesizing CMSs from agro-residues.


Assuntos
Carvão Vegetal , Zeolitas , Adsorção , Agricultura , Carvão Vegetal/química , Temperatura , Zeolitas/química
8.
Molecules ; 26(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770812

RESUMO

The conversion of raw fruits and vegetables, including tomatoes into processed food products creates side streams of residues that can place a burden on the environment. However, these processed residues are still rich in bioactive compounds and in an effort to valorize these materials in tomato by-product streams, the main aim of this study is to extract proteins and identify the main phenolic compounds present in tomato pomace (TP), peel and skins (TPS) by HPLC-DAD-ESI-QTOF. Forty different phenolic compounds were identified in the different tomato extracts, encompassing different groups of phenolic compounds, including derivatives of simple phenolic acid derivatives, hydroxycinnamoylquinic acid, flavones, flavonones, flavonol, and dihydrochalcone. In the crude protein extract (TPE) derived from tomatoes, most of these compounds were still present, confirming that valuable phenolic compounds were not degraded during food processing of these co-product streams. Moreover, phenolic compounds present in the tomato protein crude extract could provide a valuable contribution to the required daily intake of phenolics that are usually supplied by consuming fresh vegetables and fruits.


Assuntos
Manipulação de Alimentos , Fenóis/análise , Extratos Vegetais/análise , Proteínas de Plantas/química , Solanum lycopersicum/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
9.
Appl Microbiol Biotechnol ; 104(8): 3245-3252, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076775

RESUMO

With growing interest in alternative fuels to minimize carbon and particle emissions, research continues on the production of lignocellulosic ethanol and on the development of suitable yeast strains. However, great diversities and continued technical advances in pretreatment methods for lignocellulosic biomass complicate the evaluation of developed yeast strains, and strain development often lags industrial applicability. In this review, recent studies demonstrating developed yeast strains with lignocellulosic biomass hydrolysates are compared. For the pretreatment methods, we highlight hydrothermal pretreatments (dilute acid treatment and autohydrolysis), which are the most commonly used and effective methods for lignocellulosic biomass pretreatment. Rather than pretreatment conditions, the type of biomass most strongly influences the composition of the hydrolysates. Metabolic engineering strategies for yeast strain development, the choice of xylose-metabolic pathway, adaptive evolution, and strain background are highlighted as important factors affecting ethanol yield and productivity from lignocellulosic biomass hydrolysates. A comparison of the parameters from recent studies demonstrating lignocellulosic ethanol production provides useful information for future strain development.


Assuntos
Biomassa , Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Hidrólise , Engenharia Metabólica/métodos , Redes e Vias Metabólicas
10.
Bioprocess Biosyst Eng ; 43(9): 1549-1560, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32328731

RESUMO

Pectinaceous agricultural residues rich in D-galacturonic acid (D-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, D-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of D-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Poligalacturonase/metabolismo , Beta vulgaris/química , Pectinas/química
11.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138276

RESUMO

This study explores the use of a novel activating agent and demonstrates the production and characterisation of activated carbon (AC) from a combine palm waste (CPW) in 3:2:1 proportion by weight of empty fruit bunch, mesocarp fibre and palm kernel shell. The resulting biomass was processed by a microwave-assisted method using trona and compared with material produced by conventional routes. These results demonstrate the potential of trona ore as an activating agent and the effectiveness of using a combined palm waste for a single stream activation process. It also assesses the effectiveness of trona ore in the elimination of alcohol, acids and aldehydes; with a focus on increasing the hydrophilicity of the resultant AC. The optimum results for the conventional production technique at 800 °C yielded a material with SBET 920 m2/g, Vtotal 0.840 cm3/g, a mean pore diameter of 2.2 nm and an AC yield 40%. The optimum outcome of the microwave assisted technique for CPW was achieved at 600 W, SBET is 980 m2/g; Vtotal 0.865 cm3/g; a mean pore diameter 2.2 nm and an AC yield of 42%. Fourier transform infrared spectrometry analyses showed that palm waste can be combined to produce AC and that trona ore has the capacity to significantly enhance biomass activation.


Assuntos
Bicarbonatos/química , Biomassa , Carvão Vegetal/química , Micro-Ondas , Poaceae/química
12.
Bioprocess Biosyst Eng ; 42(5): 677-685, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30661103

RESUMO

This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5-5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml-1, 0.65 mg ml-1, and 22.64 mg ml-1, respectively, and Vmax values were 0.82 mol min-1 mg-1, 0.62 mol min-1 mg-1, and 104.17 mol min-1 mg-1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g-1 dry substrate.


Assuntos
Biocombustíveis , Celulase , Proteínas Fúngicas , Glycine max/química , Trichoderma/enzimologia , Celulase/química , Celulase/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio
13.
Asian-Australas J Anim Sci ; 32(3): 357-365, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30381740

RESUMO

OBJECTIVE: The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pre-treated Camellia seed residues for ruminants. METHODS: Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. RESULTS: After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. CONCLUSION: The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.

14.
Int J Mol Sci ; 19(10)2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301253

RESUMO

A new form-stable composite phase change material (PEG/ASB) composed of almond shell biochar (ASB) and polyethylene glycol (PEG) was produced via a simple and easy vacuum impregnation method. The supporting material ASB, which was cost effective, environmentally friendly, renewable and rich in appropriate pore structures, was produced from agricultural residues of almond shells by a simple pyrolysis method, and it was firstly used as the matrix of PEG. Different analysis techniques were applied to investigate the characteristics of PEG/ASB, including structural and thermal properties, and the interaction mechanism between ASB and PEG was studied. The thermogravimetric analysis (TGA) and thermal cycle tests demonstrated that PEG/ASB possessed favorable thermal stability. The differential scanning calorimetry (DSC) curves demonstrated that the capacities for latent heat storage of PEG/ASB were enhanced with increasing PEG weight percentage. Additionally, PEG/ASB had an excellent thermal conductivity of 0.402 W/mK, which was approximately 1.6 times higher than that of the pure PEG due to the addition of ASB. All the study results indicated that PEG/ASB had favorable phase change properties, which could be used for thermal energy storage.


Assuntos
Carvão Vegetal/química , Transição de Fase , Polímeros/síntese química , Prunus dulcis/química , Custos e Análise de Custo , Polietilenoglicóis/química , Polímeros/economia , Eliminação de Resíduos/economia , Eliminação de Resíduos/métodos , Condutividade Térmica
15.
J Environ Manage ; 216: 169-175, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28943060

RESUMO

This paper concerns the process of production and properties of pellets based on biomass wastes. Co-pelletization was performed for sewage sludge from municipal wastewater treatment plant and other biomass material such as animal and olive wastes. The aim of the present study was to identify the key factors affecting on the sewage sludge and agricultural residues co-pelletization processes conditions. The impact of raw material type, pellet length, moisture content and particle size on the physical properties was investigated. The technic and technological aspects of co-pelletization were discussed in detail. The physical parameters of pellets, i.e.: drop strength, absorbability and water resistance were determined. Among others, also energy parameters: low and high heat value, content of ash and volatiles were presented. Results showed the range of raw materials moisture, which is necessary to obtain good quality biofuels and also ratio of sewage sludge in pelletizing materials. The analysis of the energetic properties has indicated that the pellet generated on the basis of the sewage sludge and another biomass materials can be applied in the processes of co-combustion with coal. Those biofuels are characterised with properties making them suitable for use in thermal processes and enabling their transport and storage.


Assuntos
Agricultura , Biocombustíveis , Esgotos , Animais , Biomassa , Águas Residuárias
16.
Waste Manag Res ; 36(9): 800-809, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29921175

RESUMO

Currently, there is a growing worldwide interest for the treatment of wastes, and especially farm wastes, by anaerobic digestion. Biochemical methane potential is a key parameter for the design, optimisation and monitoring of the anaerobic digestion process, but it is also time consuming (4-7 weeks). Near infrared reflectance spectroscopy seems a promising method to predict the biochemical methane potential of a wide range of organic substrates. This study compares a 'global' predictive model mainly built with biogas plant feedstocks, and a more 'agricultural' specific one built with farm wastes only (e.g. manures and crop residues). The global model was calibrated with 245 samples and the specific one with 171 samples. In parallel, validation sets composed of 36 farm wastes and eight other wastes (sludge, fruit residues and vegetables) were used to evaluate and compare both models. Satisfying results were obtained on the validation sets considering, respectively for the global and the specific models, a root mean square error of prediction of 44 and 34 NL CH4 kg-1 volatile solid, a coefficient of determination of 0.76 and 0.83, and a ratio of performance to deviation of 2.0 and 2.4. In general rules, the specific model was better than the global one in the prediction of farm wastes methane potential. However, thanks to its larger sample variability, the global one was more robust, especially towards the 'other' wastes, which can be introduced punctually in agricultural biogas plant.


Assuntos
Biocombustíveis , Metano , Fazendas , Esgotos , Espectroscopia de Luz Próxima ao Infravermelho
17.
Int J Mol Sci ; 18(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165411

RESUMO

Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.


Assuntos
Fabaceae/química , Lignina/química , Lignina/isolamento & purificação , Poaceae/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
18.
Crit Rev Biotechnol ; 36(4): 594-606, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25641325

RESUMO

Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited.


Assuntos
Oligossacarídeos , Pectinas , Prebióticos , Agricultura , Ração Animal , Animais , Indústria Alimentícia , Humanos , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Pectinas/farmacologia
19.
J Environ Manage ; 181: 536-543, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27429359

RESUMO

Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive significant differences were observed in alkaline soil. These results suggest that biochars derived from agricultural residues may act as a source of P in agronomic applications and improve plant growth, although soil conditions may play a significant role.


Assuntos
Agricultura/métodos , Carvão Vegetal/química , Fósforo/farmacocinética , Solo/química , Disponibilidade Biológica , Biomassa , Concentração de Íons de Hidrogênio , Lolium/crescimento & desenvolvimento , Olea , Oryza/química , Fósforo/química , Temperatura , Vitis , Resíduos , Água/química
20.
Crit Rev Biotechnol ; 35(3): 302-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24494703

RESUMO

There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.


Assuntos
Agricultura , Biocombustíveis , Biomassa , Biotecnologia/métodos , Etanol , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA