Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 186(26): 5798-5811.e26, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134875

RESUMO

Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Amiloide/química , Microscopia Crioeletrônica , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Proteínas Amiloidogênicas
2.
J Biol Chem ; 299(9): 105122, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536631

RESUMO

The ß-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-ß, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.


Assuntos
Amiloide , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Agregados Proteicos , Conformação Proteica em Folha beta , Humanos
3.
Angew Chem Int Ed Engl ; 62(19): e202209252, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542681

RESUMO

Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Conformação Molecular , Mutação
4.
Biochemistry (Mosc) ; 87(5): 450-463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35790379

RESUMO

Amyloids are protein aggregates with the cross-ß structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially significant human neurodegenerative diseases, and on the other hand, by the discovery of functional amyloids, whose formation is an integral part of cellular processes. To date, more than a hundred proteins with the amyloid or amyloid-like properties have been identified. Studying the structure of amyloid aggregates has revealed a wide variety of protein conformations. In the review, we discuss the diversity of protein folds in the amyloid-like aggregates and the characteristic features of amyloid aggregates that determine their unusual properties, including stability and interaction with amyloid-specific dyes. The review also describes the diversity of amyloid aggregates and its significance for living organisms.


Assuntos
Proteínas Amiloidogênicas , Amiloidose , Amiloide/metabolismo , Amiloidose/genética , Humanos , Polimorfismo Genético , Conformação Proteica
5.
Biochim Biophys Acta ; 1864(7): 794-804, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27045222

RESUMO

Certain amino acid stretches are considered 'critical' to trigger amyloidogenesis in a protein. Synthetic peptides corresponding to these stretches are often used as experimental mimics for studying the amyloidogenesis of their parent protein. Here we provide evidence that such simple extrapolation is misleading. We scrutinized each step of amyloid progression of full length bovine carbonic anhydrase (BCA) and compared it with the amyloidogenic process of its critical peptide stretch 201-227 (PepB). We found that under similar solution conditions amyloidogenesis of BCA followed surface-catalyzed secondary nucleation, whereas, that of PepB followed classical nucleation-dependent pathway. AFM images showed that while BCA formed short, thick and branched fibrils, PepB formed thin, long and unbranched fibrils. Structural information obtained by ATR-FTIR spectroscopy suggested parallel arrangement of intermolecular ß-sheet in BCA amyloids in contrast to PepB amyloids which arranged into antiparallel ß sheets. Amyloids formed by BCA were unable to seed the fibrillation of PepB and vice versa. Even the intermediates formed during lag phase revealed contrasting FTIR and far UV CD signature, hydrophobicity, morphology and cell cytotoxicity. Thus, we propose that sequences other than critical amyloidogenic stretches may significantly influence the initiation, polymerization and final fibrillar morphology of amyloid forming protein. The results have been discussed in light of primary sequence mediated amyloid polymorphism and its importance in the rational design of amyloid nanomaterials possessing desired physico-chemical properties.


Assuntos
Amiloide/química , Anidrases Carbônicas/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Animais , Anidrases Carbônicas/ultraestrutura , Bovinos , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Adv Sci (Weinh) ; : e2402740, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899849

RESUMO

Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs. Through AFM statistical analysis, an extended array of heterogeneous architectures that are rationalized by mesoscopic theoretical arguments are identified. Notably, an unusual fibrillization pathway is also unraveled toward mixed-curvature polymorphs via the widespread recruitment and intertwining of protofilaments and protofibrils. The results present an original view of amyloid polymorphism and advance the fundamental understanding of the fibrillization mechanism from single protofilaments into mature amyloid fibrils.

7.
ACS Chem Neurosci ; 15(10): 2058-2069, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652895

RESUMO

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Placa Amiloide , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Mutação , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Conformação Proteica
8.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140917, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061153

RESUMO

Aggregation of neuronal protein α-synuclein is implicated in synucleinopathies, including Parkinson's disease. Despite abundant in vitro studies, the mechanism of α-synuclein assembly process remains ambiguous. In this work, α-synuclein aggregation was induced by its constant mixing in two separate modes, either by agitation in a 96-well microplate reader (MP) or in microcentrifuge tubes using a shaker incubator (SI). Aggregation in both modes occurred through a sigmoidal growth pattern with a well-defined lag, growth, and saturation phase. The end-stage MP- and SI-derived aggregates displayed distinct differences in morphological, biochemical, and spectral signatures as discerned through AFM, proteinase-K digestion, FTIR, Raman, and CD spectroscopy. The MP-derived aggregates showed irregular morphology with a significant random coil conformation, contrary to SI-derived aggregates, which showed typical ß-sheet fibrillar structures. The end-stage MP aggregates convert to ß-rich SI-like aggregates upon 1) seeding with SI-derived aggregates and 2) agitating in SI. We conclude that end-stage MP aggregates were in a kinetically trapped conformation, whose kinetic barrier was bypassed upon either seeding by SI-derived fibrils or shaking in SI. We further show that MP-derived aggregates that form in the presence of sorbitol, an osmolyte, displayed a ß-rich signature, indicating that the preferential exclusion effect of osmolytes helped overcome the kinetic barrier. Our findings help in unravelling the kinetic origin of different α-synuclein aggregated polymorphs (strains) that encode diverse variants of synucleinopathies. We demonstrate that kinetic control shapes the polymorphic landscape of α-synuclein aggregates, both through de novo generation of polymorphs, and by their interconversion.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/química , Sinucleinopatias/metabolismo , Doença de Parkinson/metabolismo , Amiloide/química , Proteínas Amiloidogênicas
9.
Protein Sci ; 32(10): e4736, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515406

RESUMO

Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between ß-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Amiloide/química , Membrana Celular/metabolismo , Corpos de Lewy/metabolismo , Lipídeos
10.
Methods Mol Biol ; 2551: 321-344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310213

RESUMO

Protein aggregates, hereunder amyloid fibrils, can undergo a maturation process, whereby early formed aggregates undergo a structural and physicochemical transition leading to more mature species. In the case of amyloid-related diseases, such maturation confers distinctive biological properties of the aggregates, which may account for a range of diverse pathological subtypes. Here, we present a protocol for the preparation of α-synuclein amyloid fibrils differing in the level of their maturation. We utilize widely accessible biophysical techniques to characterize the structure and morphology and a simple thermal treatment procedure to test their thermodynamic stability. Their biological properties are probed by means of binding to native plasma membrane sheets originating from mammalian cell lines.


Assuntos
Amiloidose , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/metabolismo , Amiloide/química , Agregados Proteicos , Biofísica , Amiloidose/metabolismo , Mamíferos/metabolismo
11.
J Biomol Struct Dyn ; 41(23): 14103-14115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036430

RESUMO

α-Synuclein is a presynaptic neuronal protein. The fibril form of α-synuclein is a major constituent of the intraneuronal inclusion called Lewy body, a characteristic hallmark of Parkinson's disease. Recent ssNMR and cryo-EM experiments of wild-type α-synuclein fibrils have shown polymorphism and observed two major polymorphs, rod and twister. To associate the cytotoxicity of α-synuclein fibrils with their structural features, it is essential to understand the origins of their structural stability. In this study, we performed molecular dynamics simulations of the two major polymorphs of wild-type α-synuclein fibrils. The predominance of specific fibril polymorphs was rationalized in terms of relative structural stability in aqueous environments, which was attributed to the cooperative contributions of various stabilizing features. The results of the simulations indicated that highly stable structures in aqueous environments could be maintained by the cooperation of compact sidechain packing in the hydrophobic core, backbone geometry of the maximal ß-sheet content wrapping the hydrophobic core, and solvent-exposed sidechains with large fluctuations maximizing the solvation entropy. The paired structure of the two protofilaments provides additional stability, especially at the interface region, by forming steric zipper interactions and hiding the hydrophobic residues from exposure to water. The sidechain interaction analyses and pulling simulations showed that the rod polymorph has stronger sidechain interactions and exhibits higher dissociation energy than the twister polymorph. It is expected that our study will provide a basis for understanding the pathogenic behaviors of diverse amyloid strains in terms of their structural properties.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Virulência , Simulação de Dinâmica Molecular , Amiloide/química
12.
ACS Sens ; 8(4): 1500-1509, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36946692

RESUMO

Amyloid beta (Aß) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aß plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aß plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aß plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aß plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/química , Placa Amiloide/patologia , Modelos Animais de Doenças , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Camundongos Transgênicos , Corantes Fluorescentes
13.
Structure ; 30(8): 1178-1189.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35609599

RESUMO

The increasing number of amyloid structures offers an opportunity to investigate the general principles determining amyloid stability and polymorphism. We find that amyloid stability is dominated by ∼30% of residues localized in segments that favor the cross-ß conformation. These correspond to known aggregation-nucleating regions and constitute a stabilizing cross-ß structural framework that is shared among polymorphs. Alternative packing of these segments with structurally frustrated regions within the protofilament results in conformationally different, but energetically similar, polymorphs. Differential analysis of distributions of interatomic distances in amyloid and globular structures revealed that unconventional residue contacts, such as identical charges in close proximity, are located in energetically frustrated segments of amyloids. These observations suggest that polymorphism results from a framework mechanism consisting of conserved stabilizing regions of high cross-ß propensity. These are interspersed by structurally suboptimal regions that are potential sites of conformational plasticity and interaction with stabilizing cofactors such as (poly)ions.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Amiloide/química , Peptídeos beta-Amiloides/química , Conformação Proteica , Termodinâmica
14.
FEBS J ; 289(8): 2025-2046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460517

RESUMO

Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.


Assuntos
Amiloidose , Doenças Neurodegenerativas , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Amiloidose/genética , Humanos , Doenças Neurodegenerativas/genética
15.
Adv Sci (Weinh) ; 8(2): 2002182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511004

RESUMO

Nanomechanical properties of amyloid fibrils and nanocrystals depend on their secondary and quaternary structure, and the geometry of intermolecular hydrogen bonds. Advanced imaging methods based on atomic force microscopy (AFM) have unravelled the morphological and mechanical heterogeneity of amyloids, however a full understanding has been hampered by the limited resolution of conventional spectroscopic methods. Here, it is shown that single molecule nanomechanical mapping and infrared nanospectroscopy (AFM-IR) in combination with atomistic modelling enable unravelling at the single aggregate scale of the morphological, nanomechanical, chemical, and structural transition from amyloid fibrils to amyloid microcrystals in the hexapeptides, ILQINS, IFQINS, and TFQINS. Different morphologies have different Young's moduli, within 2-6 GPa, with amyloid fibrils exhibiting lower Young's moduli compared to amyloid microcrystals. The origins of this stiffening are unravelled and related to the increased content of intermolecular ß-sheet and the increased lengthscale of cooperativity following the transition from twisted fibril to flat nanocrystal. Increased stiffness in Young's moduli is correlated with increased density of intermolecular hydrogen bonding and parallel ß-sheet structure, which energetically stabilize crystals over the other polymorphs. These results offer additional evidence for the position of amyloid crystals in the minimum of the protein folding and aggregation landscape.

16.
ACS Nano ; 15(1): 944-953, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33348981

RESUMO

The phenomenon of amyloid polymorphism is a key feature of protein aggregation. Unravelling this phenomenon is of great significance for understanding the underlying molecular mechanisms associated with neurodegenerative diseases and for the development of amyloid-based functional biomaterials. However, the understanding of the molecular origins and the physicochemical factors modulating amyloid polymorphs remains challenging. Herein, we demonstrate an association between amyloid polymorphism and environmental stress in solution, induced by an air/water interface in motion. Our results reveal that low-stress environments produce heterogeneous amyloid polymorphs, including twisted, helical, and rod-like fibrils, whereas high-stress conditions generate only homogeneous rod-like fibrils. Moreover, high environmental stress converts twisted fibrils into rod-like fibrils both in-pathway and after the completion of mature amyloid formation. These results enrich our understanding of the environmental origin of polymorphism of pathological amyloids and shed light on the potential of environmentally controlled fabrication of homogeneous amyloid biomaterials for biotechnological applications.


Assuntos
Amiloide , Hidrodinâmica , Proteínas Amiloidogênicas , Água
17.
Prog Mol Biol Transl Sci ; 170: 461-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32145951

RESUMO

Amyloid formation by proteins and peptides is the hallmark of many diseases. Growing evidence suggests that oligomeric species arising during aggregation are toxic, but the molecular mechanism of aggregation and oligomer generation remains unclear. Recent discoveries that amyloid fibrils can convert soluble proteins into oligomeric nuclei to facilitate aggregation highlight the role played by fibrils in protein aggregation. We review here computational studies conducted to elucidate the molecular mechanism of two fibril-dependent processes during protein aggregation, namely, secondary nucleation and fibril elongation. Secondary nucleation occurs on the lateral surface of a fibril to generate nuclei while fibril elongation, through addition of proteins to the ends of fibrils increases the lateral surface of the fibril. We summarize the molecular insights into each process unraveled by computational methods at levels ranging from coarse-grained to atomic and discuss the connection between these insights and experimental observations. The computational challenges faced by these studies and their solutions are also discussed. Finally, we propose possible computational studies that could shed light on the mechanistic aspects of secondary nucleation and fibril elongation that have been unaddressed.


Assuntos
Amiloide/química , Simulação por Computador , Agregados Proteicos , Peptídeos beta-Amiloides/química , Sítios de Ligação , Peptídeos/química
18.
Cell Chem Biol ; 25(5): 595-610.e5, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29657084

RESUMO

The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aß1-42 associated with Alzheimer's disease. Expression of Aß1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ring-tangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of Aß1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of Aß1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that Aß1-42 cytotoxicity is both cell and aggregate morphotype dependent.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Drosophila/metabolismo , Neuroglia/patologia , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Animais , Modelos Animais de Doenças , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Agregação Patológica de Proteínas/metabolismo
19.
Prion ; 10(1): 41-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040981

RESUMO

In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the 'winged-helix' N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a 'prionoid'. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI(+)] prion and RepA-WH1 generates [REP-PSI(+)], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.


Assuntos
Amiloide/química , Amiloide/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Príons/química , Príons/metabolismo , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Amiloide/ultraestrutura , DNA Helicases/ultraestrutura , DNA Bacteriano , Proteínas de Choque Térmico HSP70 , Conformação Proteica , Transativadores/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA