Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 182: 106220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423497

RESUMO

Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.


Assuntos
Iridoviridae , Ranavirus , Animais , Ranavirus/genética , Adsorção , Linhagem Celular , Urodelos
2.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632650

RESUMO

The Andrias davidianus ranavirus (ADRV) is a member of the family Iridoviridae and belongs to the nucleocytoplasmic large DNA viruses. Based on genomic analysis, an ADRV-encoding protein, ADRV 12L, and its homologs from other iridoviruses were predicted as Rad2 family proteins based on the conserved amino acids, domains, and secondary structures. Expression analysis showed that the transcription of ADRV 12L started at 4 h post infection, and its expression was not inhibited by a DNA-replication inhibitor. Meanwhile, immunofluorescence localization showed that ADRV 12L mainly localized in viral factories and colocalized with the viral nascent DNA, which hinted at a possible role in DNA replication. Furthermore, a mutant ADRV lacking 12L (ADRV-Δ12L) was constructed. In both luciferase assays based on homologous recombination (HR) and double-strand break repair (DSBR) that followed, ADRV-Δ12L induced less luciferase activity than the wild-type ADRV, indicating that HR and DSBR were impaired in ADRV-Δ12L infected cells. In addition, infection with ADRV-Δ12L resulted in smaller plaque sizes and lower viral titers than that with wild-type ADRV, indicating an important role for 12L in efficient virus infection. Therefore, the results suggest that Rad2 homologs encoded by iridovirus have important roles in HR- and DSBR-process of the viral DNA and, thus, affect virus replication and the production of progeny virions.


Assuntos
Ranavirus , Animais , Reparo do DNA , DNA Viral/genética , DNA Viral/metabolismo , Ranavirus/genética , Ranavirus/metabolismo , Urodelos , Replicação Viral
3.
3 Biotech ; 9(11): 433, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696038

RESUMO

13R, a core gene of Andrias davidianus ranavirus (ADRV), encoded a protein containing a transmembrane domain (TMD) and a restriction endonuclease-like domain. However, the characterization and function of 13R and the protein it encodes remain unclear. In this study, Chinese giant salamander thymus cell (GSTC) was used to investigate the function of 13R. The results showed that the 13R transcripts were detected first at 8 h post-infection (hpi) by RT-PCR and the protein was detected first at 24 hpi by western blot, but the transcription was inhibited by cycloheximide and cytosine arabinofuranoside, indicating that 13R is a viral late gene. Subcellular localization showed that the 13R was co-localized with endoplasmic reticulum (ER) in the cytoplasm, while 13R deleting TMD (13RΔTM) was distributed in cytoplasm and nucleus. During ADRV infection, 13R was observed first in the cytoplasm and nucleus, and later aggregated into the viromatrix, whereas 13RΔTM remain dispersed in cytoplasm and nucleus. Western blot analysis suggested that 13R was a viral non-structural protein and its overexpression did not affect the viral titer in GSTC. All these indicated that the TMD of 13R is crucial for the co-localization into the ER and the viromatrix.

4.
Viruses ; 11(7)2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261956

RESUMO

Ranavirus cross-species infections have been documented, but the viral proteins involved in the interaction with cell receptors have not yet been identified. Here, viral cell-binding proteins and their cognate cellular receptors were investigated using two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), and two different cell lines, Chinese giant salamander thymus cells (GSTC) and Epithelioma papulosum cyprinid (EPC) cells. The heparan sulfate (HS) analog heparin inhibited plaque formation of ADRV and RGV in the two cell lines by more than 80% at a concentration of 5 µg/mL. In addition, enzymatic removal of cell surface HS by heparinase I markedly reduced plaque formation by both viruses and competition with heparin reduced virus-cell binding. These results indicate that cell surface HS is involved in ADRV and RGV cell binding and infection. Furthermore, recombinant viral envelope proteins ADRV-58L and RGV-53R bound heparin-Sepharose beads implying the potential that cell surface HS is involved in the initial interaction between ranaviruses and susceptible host cells. To our knowledge, this is the first report identifying cell surface HS as ranavirus binding factor and furthers understanding of interactions between ranaviruses and host cells.


Assuntos
Infecções por Vírus de DNA/veterinária , Heparitina Sulfato/metabolismo , Ranavirus/metabolismo , Receptores Virais/metabolismo , Animais , Carpas , Linhagem Celular , Infecções por Vírus de DNA/metabolismo , Infecções por Vírus de DNA/virologia , Ranavirus/genética , Urodelos , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Viruses ; 10(2)2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364850

RESUMO

Andrias davidianus ranavirus (ADRV) is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L) and the 58L gene (pcDNA-58L) were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS) of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%). Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA). Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN), myxovirus resistance (Mx), major histocompatibility complex class IA (MHCIA), and immunoglobulin M (IgM) were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.


Assuntos
Doenças dos Animais/prevenção & controle , Infecções por Vírus de DNA/veterinária , Ranavirus/imunologia , Urodelos/virologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Doenças dos Animais/imunologia , Doenças dos Animais/mortalidade , Doenças dos Animais/virologia , Animais , Anticorpos Antivirais/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Ranavirus/genética , Vacinas de DNA/genética , Carga Viral , Vacinas Virais/genética
6.
J Comp Pathol ; 152(2-3): 110-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25728809

RESUMO

Andrias davidianus ranavirus (ADRV) is an emerging viral pathogen that causes severe disease in Chinese giant salamanders, the largest extant amphibian in the world. A fish cell line, Epithelioma papulosum cyprinid (EPC), and a new amphibian cell line, Chinese giant salamander spleen cell (GSSC), were infected with ADRV and observed by light and electron microscopy. The morphological changes in these two cell lines infected with ADRV were compared. Cytopathic effect (CPE) began with rounding of the cells, progressing to cell detachment in the cell monolayer, followed by cell lysis. Significant CPE was visualized as early as 24 h post infection (hpi) in EPC cells and at 36 hpi in GSSC cells. Microscopical examination showed clear and significant CPE in EPC cells, while less extensive and irregular CPE with some adherent cells remaining was observed in GSSC cells. Following ADRV infection, CPE became more extensive. Transmission electron micrographs showed many virus particles around cytoplasmic vacuoles, formed as crystalline arrays or scattered in the cytoplasm of infected cells. Infected cells showed alteration in nuclear morphology, with condensed and marginalized nuclear chromatin on the inner aspect of the nuclear membrane and formation of a cytoplasmic viromatrix adjacent to the nucleus in both cell lines. Some virus particles were also detected in the nucleus of infected GSSC cells. Both cell lines are able to support replication of ADRV and can therefore be used to investigate amphibian ranaviruses.


Assuntos
Infecções por Vírus de DNA/patologia , Urodelos/virologia , Animais , Linhagem Celular , Cyprinidae , Infecções por Vírus de DNA/veterinária , Microscopia Eletrônica de Transmissão , Ranavirus , Baço/ultraestrutura , Baço/virologia
7.
Dev Comp Immunol ; 42(2): 311-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24135718

RESUMO

A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Urodelos/imunologia , Alelos , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação/imunologia , China , Evolução Molecular , Perfilação da Expressão Gênica , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Dados de Sequência Molecular , Filogenia , Ligação Proteica/imunologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Urodelos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA