Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt B): 938-945, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270393

RESUMO

Water contamination owing to anionic pollutants is a persisting and ubiquitous global threat. The current remediation technologies are mostly low in efficiency, expensive in materials and often associated with complicated processes. Herein, we report a characteristic zirconium-based nanocluster that can work as molecular robots for the efficient remediation of anions-contaminated water with great effectiveness and molecular-level accuracy. It exhibits a stimuli-responsive behavior to facilitate the water treatment process: dissolve in acidic aqueous solutions for molecular-level decontamination and quickly aggregate for post-remediation collection. It can precisely capture the representative anionic pollutants, whilst featuring satisfactory capacities (ca. 175 mg-arsenic/g, 60 mg-chromium/g, 45 mg-fluoride/g, 70 mg-phosphorus/g, respectively), super-fast kinetics (finishing uptake within seconds, which is two to four orders of magnitude faster than typical sorbents), as well as multi-cycle applications without appreciable loss of activity. The coexisting common ions show no effect on the target uptake. The responsible active site investigation shows that four active sites are responsible for the monovalent pollutant removal, and the active sites work in pairs to capture divalent chromate species. Cost analysis shows its economical applicability in practical applications. This work would lead to the development of effective water decontamination with higher effectiveness, more convenience, lower cost and more practical application value.

2.
Int J Biol Macromol ; 227: 1271-1281, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464187

RESUMO

In this work, natural biopolymer stemming from lignocellulosic peanut hull biomass was used as a green and low-cost adsorbent to eliminate anionic Congo red (CR) and Cr(VI) ions from aqueous sample. In order to enhance the removal performance, the lignocellulosic biopolymer was subjected to amino-modification by the graft copolymerization of (3-acrylamidopropyl) trimethylammonium chloride and N, N'-methylenebisacrylamide. The property of the prepared amino-functionalized biopolymer (AFB) was examined through FTIR, TG, SEM, particle size analysis, zeta potential determination and XPS. The adsorption efficacy of AFB for CR and Cr(VI) was tested at different pH, contact time and initial concentration. The kinetic, isotherm and thermodynamics investigations revealed that the uptakes of CR and Cr(VI) were the combination processes of chemical and physical interactions, and both endothermic in nature. The AFB exhibited good reusability without significant loss in adsorption capacity after five consecutive cycles. Mechanistic analysis indicated that the quaternary ammonium groups in AFB contributed a lot to the binding of anionic compounds through electrostatic attraction. In addition, n-π and hydrogen bonding while reduction and coordination were also responsible for the removal of CR and Cr(VI), respectively. The present study provides a favorable strategy for the removal of anionic contaminates in water by using green and sustainable lignocellulosic wastes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cromo/química , Biopolímeros , Vermelho Congo , Adsorção , Cinética
3.
Environ Sci Pollut Res Int ; 30(24): 65250-65266, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081367

RESUMO

Polyether sulfone (PES)-based thin-film nanofiltration (TFN) membranes embedded with ferric hydroxide (FeIII(OH)x) functionalized graphene oxide (GO) nanoparticles were fabricated through interfacial polymerization for a generalized application in removal of a plethora of anionic and toxic water contaminants. Following the most relevant characterization, the newly synthesized membranes were fitted in a novel flat sheet cross-flow module, for experimental investigation on purification of live contaminated groundwater collected from different affected areas. The separation performances of the membranes in the flat sheet cross-flow module demonstrated that GOF membranes had higher selectivity for monovalent and divalent salt rejections than pristine GO membranes. Furthermore, both membranes were tested for simultaneously removing widely occurring hazardous ions of heavy metals and metalloids in groundwater, such as arsenic, selenium, chromium, and fluoride. Compared to the pristine GO and the reported membranes in the literature, the GOF membrane exhibited remarkable performance in terms of rejection efficiency (Cr (VI): 97.2%, Se (IV): 96.6%, As(V): 96.3%, F- 88.4%) and sustained flux of 184 LMH (Lm-2 h-1) at an optimum transmembrane pressure of 16 bar. The investigated membrane module equipped with the GOF membrane proved to be a low-cost system with higher anionic rejection and sustained high flux at a comprehensive pH range, as evident over long hours of study vis-à-vis reported systems.


Assuntos
Água Potável , Grafite , Nanocompostos , Grafite/química , Compostos Férricos , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA