Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Res ; 248: 118263, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281564

RESUMO

With the increase of sustainable development goal, the bio-based adsorption materials with high and selective dye removal are important for water treatment in the dyeing industry. In this paper, a bio-based adsorption foam composed of metal-organic frameworks (MOF) and polyethyleneimine (PEI)-modified cellulose was prepared by a three-step process, i.e., PEI modification of cellulose fibers (PC), MOF decoration of PEI-modified cellulose (MIL-53@PC), and in-situ foaming with polyurethane. PEI modification provides cellulose fiber with more active sites for both dye adsorption and MOF bonding. We found that MIL-53 crystals were tightly bonded on the surface of PC through hydrogen bonding. Because of the abundant adsorption sites (e.g., amines, iron oxide group), the MIL-53@PC demonstrated high adsorption capacity and selectivity for anionic dye (e.g., 936.5 mg/g for methyl orange) through electrostatic interaction and hydrogen bonding. Finally, MIL-53@PC particles were blended with a waterborne polyurethane prepolymer to prepare a three-dimensional hydrophilic foam (MIL-53@PC/PUF), which not only maintained high adsorption capacity and selectivity of MIL-53@PC and also improved its recyclability and reusability. The MIL-53@PC/PUF offers a promising solution for dye wastewater treatment.


Assuntos
Celulose/análogos & derivados , Estruturas Metalorgânicas , Polietilenoimina/análogos & derivados , Poluentes Químicos da Água , Corantes/química , Adsorção , Polietilenoimina/química , Poliuretanos , Poluentes Químicos da Água/química
2.
Int J Phytoremediation ; 26(5): 639-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37846031

RESUMO

Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were classified into five categories based on their chemical composition: bio-sorbents, activated carbon, biochar, clays and minerals, and composites. In this review article, we want to demonstrate the capacity of natural and modified materials for dye adsorption which can yield significant improvements to the adsorption capacity of dyes such as methyl orange. In addition, the effect of critical variables including contact time, initial methyl orange concentration, dosage of adsorbent, pH, temperature and mechanism on the adsorption efficiency will be covered as part of this literature review.


The novelty of this review article describes the utility of various natural and modified materials employed to remove methyl orange (MO) from water, wastewater and aqueous solutions. Natural sorbents are very popular adsorbents because the majority of them are affordable and readily accessible in terms of addressing key challenges concerning water security that are relevant to MO adsorption processes.This review is significant since it will be useful in guiding researchers on the selection of an adsorbent that would be suitable for MO adsorption. Furthermore, our findings provide a basis for researchers interested in the design of composite adsorbents based on the selection of constituent components.


Assuntos
Compostos Azo , Águas Residuárias , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Corantes , Cinética , Concentração de Íons de Hidrogênio
3.
Small ; 19(33): e2300672, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072832

RESUMO

Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied. First, using a facile solvothermal method, ZnO nanoparticles are introduced into the rGO laminate to stabilize and enlarge the interlayer spacing. Subsequently, the ZnO/rGO membrane is immersed in a solution of tetrakis(4-carboxyphenyl)porphyrin (H2 TCPP) to realize in situ transformation of ZnO into Zn-TCPP in the confined interlayer space of rGO. By optimizing the transformation time and mass loading of ZnO, the obtained Zn-TCPP/rGO laminar membrane exhibits preferential orientation of Zn-TCPP, which reduces the pathway tortuosity for small molecules. As a result, the composite membrane achieves a high water permeance of 19.0 L m-2  h-1  bar-1 and high anionic dye rejection (>99% for methyl blue).

4.
Environ Res ; 200: 111492, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118243

RESUMO

Anionic Congo red dye (CR) is not effectively removed by conventional adsorbents. Three novel biochars derived from agro-waste (Acacia auriculiformis), modified with metal salts of FeCl3, AlCl3, and CaCl2 at 500 °C pyrolysis have been developed to enhance CR treatment. These biochars revealed significant differences in effluents compared to BC, which satisfied initial research expectations (P < 0.05). The salt concentration of 2 M realized optimal biochars with the highest CR removal of 96.8%, for AlCl3-biochar and FeCl3-biochar and 70.8% for CaCl2-biochar. The modified biochars were low in the specific surface area (137.25-380.78 m2 g-1) compared normal biochar (393.15 m2 g-1), had more heterogeneous particles and successfully integrated metal oxides on the surface. The CR removal increased with a decrease in pH and increase in biochar dosage, which established an optimal point at an initial loading of 25 mg g-1. Maximum adsorption capacity achieved 130.0, 44.86, and 30.80 mg g-1 for BFe, BCa, and BAl, respectively. As magnetic biochar, which is easily separated from the solution and achieves a high adsorption capacity, FeCl3-biochar is the preferred biochar for CR treatment application.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Metais
5.
J Environ Manage ; 277: 111455, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075656

RESUMO

Systematic utilization of carbonated Mg-Al layered double hydroxide (LDH) nanosheets for methyl orange removal was investigated with respect to particle dimensions. LDHs with the smallest dimensions were carefully synthesized to have a small lateral size as well as high dispersibility. The other particles, with medium and large sizes, were prepared by hydrothermal treatment and urea hydrolysis to have larger sizes and higher crystallinity. According to kinetics and isotherm analyses, the smallest LDH showed efficient adsorption of methyl orange (1250 mg/g-LDH), which was remarkably higher than the adsorption by the other LDHs with larger lateral sizes. Unlike the larger lateral-sized LDHs, the small ones were shown to utilize all accessible adsorption sites on the nanosheets, generating nanoconfinement of methyl orange molecules. Transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) patterns indicated that the LDHs with lateral dimensions of ~40 nm fully utilized interlayer nanospace. Monte Carlo simulation suggested that the intercalated methyl orange was stabilized not only through electrostatic interactions with the LDH layer but also by π-π stacking between the methyl orange molecules, which is thought to be the driving force for replacement of carbonate anions.


Assuntos
Poluentes Químicos da Água , Compostos Azo , Hidróxidos , Água
6.
Molecules ; 24(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357459

RESUMO

Natural clay from Darbandikhan (DC) was evaluated in its natural form, after acid activation (ADC), and after pillaring (PILDC) as a potential adsorbent for the adsorption of methyl orange (MO) as a model anionic dye adsorbate. The effect of different clay treatments was investigated using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscope (SEM) and Fourier-Transform Infrared Spectroscopy (FT-IR), and N2 physisorption analysis. Both acid activation and pillaring resulted in a significant increase in adsorption affinity, respectively. The adsorption favored acidic pH for the anionic dye (MO). The adsorption process was found to follow pseudo-second-order kinetics with activation energies of 5.9 and 40.1 kJ·mol-1 for the adsorption of MO on ADC and PILDC, respectively, which are characteristic of physical adsorption. The adsorption isotherms (Langmuir, Redlich-Peterson and Freundlich) were fitted well to the experimental data. The specific surface area of the natural clay was very low (22.4 m2·g-1) compared to high-class adsorbent materials. This value was increased to 53.2 m2·g-1 by the pillaring process. Nevertheless, because of its local availability, the activated materials may be useful for the cleaning of local industrial wastewaters.


Assuntos
Ânions/química , Argila/química , Corantes/química , Adsorção , Compostos Azo/química , Análise Espectral , Termodinâmica
7.
Artigo em Inglês | MEDLINE | ID: mdl-31244375

RESUMO

The present study shows sorption capacity of bentonite from the Slovak Jelsový Potok deposit for the anionic dye (Acid Black 1) from aqueous solutions and uses it as an effective and economical adsorbent for the removal of anionic dye. The laboratory experiments were carried out in batch method at 3 different sorbent doses (20, 10 and 5 g L-1) and an initial concentration of dye ranging from 1 to 1,000 mg L-1. The adsorption equilibria data were fitted by Freundlich, Langmuir, Dubinin-Radushkevich and Temkin isotherms. The Langmuir equation provided the best description for the sorption, indicating that adsorption occurred on a mono-layered surface. The maximum sorption capacity of bentonite has been estimated as 31.29 mg g-1. Moreover, the results showed that non-linear method could be a better way to obtain the isotherm parameters. The pseudo-first- and pseudo-second-order equations have been applied for the determination of time effect on sorption/removal of dye from solution. The highest determination coefficient values were observed for the pseudo-second-order model, suggesting chemical character of the adsorption process. Acid Black 1 was probably bound through chemisorption by forming hydrogen bonds between the Si-OH and Al-OH groups in the bentonite and the -NH, -NH2 and -OH groups in the dye.


Assuntos
Negro de Amido/análise , Bentonita/química , Modelos Teóricos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Águas Residuárias/química
8.
Molecules ; 23(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223595

RESUMO

The organo-clays (OCs) were prepared by a cation exchange reaction between surfactant (cetyltrimethylammonium, C16TMA) from different counterions (Bromide, Chloride, and Hydroxide). The effect of the counterions was investigated on the physico-chemical properties of the prepared organo-clays. The highest uptake of organic cations (1.60 mmol/g) was achieved using cetyl trimethylammonium bromide solution and the lowest value (0.93 mmol/g) was obtained after modification with cetyl trimethylammonium hydroxide solution starting from the same initial ratio of mmol/g of clay greater than 2.40. The arrangement of C16TMA cations within the interlayer space was assumed to be perpendicular with a tilt angle of 32° to the plane of clay sheets instead of being parallel to the clay surface using C16TMAOH solution at the same ratio. Different techniques were used to characterize these materials. The thermal stability of these organ-clays was investigated using an in-situ X-ray diffraction (XRD) technique. The decomposition of the surfactant moiety occurred at temperatures higher than 215 °C and was accompanied with a shrinkage of the basal spacing value to 1.42 nm. These materials were applied in the removal of an acid dye "eosin." The removed amount of eosin depended on the initial concentrations and the content of surfactants in the organo-clays. The removal of eosin was found to be an endothermic process. The maximum amount of 90 mg/g was achieved. The preheated treatment temperature of two selected OCs did affect the removal properties of eosin. A progressive reduction was observed at temperatures higher than 200 °C. The regeneration of spent OCs was studied and acceptable removal efficiency was maintained after 4 to 6 cycles depending on the used initial concentrations.


Assuntos
Compostos de Cetrimônio/química , Argila/química , Amarelo de Eosina-(YS)/química , Cátions , Temperatura Alta , Estrutura Molecular , Propriedades de Superfície
9.
Ecotoxicol Environ Saf ; 145: 57-68, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28708982

RESUMO

Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution.


Assuntos
Corantes/análise , Grafite/química , Plásticos/química , Polietilenotereftalatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Química Verde , Cinética , Reciclagem , Temperatura , Águas Residuárias/química
10.
J Environ Manage ; 196: 323-329, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314221

RESUMO

In this work, an activated electric arc furnace slag (A-EAFS) was investigated as an effective Fenton catalyst for the photodegradation of methylene blue (MB) and acid blue 29 (AB29). Fourier transform infrared spectroscopy and UV-visible absorption analyses indicated that A-EAFS offers additional Fe3O4 because of the changes in the iron oxide phase and the favorable response to visible light. It has been found that the highest degradation efficiency can reach up to 94% for MB under optimal conditions of 1 g L-1 of A-EAFS, 20 mM H2O2, and pH 3. The optimal conditions for AB29 were 0.1 g L-1 A-EAFS, 4 mM H2O2, and pH 3 to reach 98% degradation efficiency. Visible light enhanced the degradation of both dyes. In addition, A-EAFS, could be easily separated magnetically, exhibited good chemical stability after seven successive photodegradation cycles.


Assuntos
Compostos Azo , Azul de Metileno , Naftalenos , Fotólise , Catálise , Peróxido de Hidrogênio
11.
J Environ Manage ; 164: 86-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26355260

RESUMO

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.


Assuntos
Antraquinonas/química , Azul de Metileno/química , Olea , Resíduos , Poluentes Químicos da Água/química , Adsorção , Biomassa , Corantes/química , Difusão , Concentração de Íons de Hidrogênio , Cinética
12.
Int J Biol Macromol ; 270(Pt 1): 132056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704070

RESUMO

Since the potential carcinogenic, toxic and non-degradable dyes trigger serious environmental contamination by improper treatment, developing novel adsorbents remains a major challenge. A novel high efficiency and biopolymer-based environmental-friendly adsorbent, chitosan­sodium tripolyphosphate-melamine sponge (CTS-STPP-MS) composite, was prepared for Orange II removing with chitosan as raw material, sodium tripolyphosphate as cross-linking agent. The composite was carefully characterized by SEM, EDS, FT-IR and XPS. The influence of crosslinking conditions, dosage, pH, initial concentration, contacting time and temperature on adsorption were tested through batch adsorption experiments. CTS-STPP-MS adsorption process was exothermic, spontaneous and agreed with Sips isotherm model accompanying the maximum adsorption capacity as 948 mg∙g-1 (pH = 3). Notably, the adsorption performance was outstanding for high concentration solutions, with a removal rate of 97 % in up to 2000 mg∙L-1 OII solution (100 mg sorbent dosage, 50 mL OII solution, pH = 3, 289.15 K). In addition, the adsorption efficiency yet remained 97.85 % after 5 repeated adsorption-desorption cycles. The driving force of adsorption was attributed to electrostatic attraction and hydrogen bonds which was proved by adsorption results coupled with XPS. Owing to the excellent properties of high-effective, environmental-friendly, easy to separate and regenerable, CTS-STPP-MS composite turned out to be a promising adsorbent in contamination treatment.


Assuntos
Compostos Azo , Quitosana , Triazinas , Poluentes Químicos da Água , Quitosana/química , Quitosana/análogos & derivados , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Triazinas/química , Compostos Azo/química , Compostos Azo/isolamento & purificação , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Benzenossulfonatos/química , Cinética , Polifosfatos/química , Ânions/química , Temperatura , Corantes/química , Corantes/isolamento & purificação
13.
Int J Biol Macromol ; 269(Pt 1): 131994, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697431

RESUMO

Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.


Assuntos
Celulose , Quitosana , Corantes , Poluentes Químicos da Água , Compostos de Zinco , Quitosana/química , Adsorção , Celulose/química , Compostos de Zinco/química , Corantes/química , Corantes/isolamento & purificação , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Sulfetos/química , Purificação da Água/métodos , Fotólise , Ânions/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-38904878

RESUMO

The dye-contaminated wastewater discharged from various industries such as dye manufacturing, paint, textile, paper, and cosmetic is a prime source of surface water pollution having serious detrimental effects on both the environment and human beings. These hazardous dyes when exposed to water obstruct the penetration of sunlight into the water and thus restrain aquatic plants from generating photosynthetic compounds. Moreover, some dyes are potential cancer-causing and also negatively impact the human nervous and respiratory systems. In this current study, modification of coconut coir powder (CCP) was carried out through cationic surfactant treatment and was successively utilized as the adsorbent for decoloring anionic dye (acid blue 185 (AB 185)) containing waste stream. Further, a comparative investigation of the dye removal efficiency of raw CCP and surfactant-modified coconut coir powder (SMCCP) as the adsorbent was studied. On surfactant treatment, using a very minimal SMCCP dosage of 8.3 g/L, a very high percentage dye removal of 98.4% is possible, whereas with raw CCP, even after using a higher dosage of 14 g/L, only 70.1% dye removal can be achieved. Characterization of SMCCP adsorbent was done by Fourier transform infrared, thermogravimetric, X-ray, and scanning electron microscope analyses. Furthermore, the optimization of critical operating parameters was investigated for the effective adsorption of AB 185 dye in batch mode. The adsorption of AB 185 onto SMCCP was a thermodynamically spontaneous endothermic process, following the Langmuir isotherm and pseudo-second-order kinetic model. Moreover, regeneration of exhausted SMCCP by 0.1 (M) NaOH was achieved with a satisfactorily high recovery of 97% in the first cycle. Subsequently, SMCCP can be successfully reutilized for five consecutive cycles with a loss of 17.6% in the total adsorption capacity. With all such advantages, the present study delivers a new paradigm to utilize the novel adsorbent SMCCP as a promising eco-friendly adsorbent aided by its advantage of regeneration and reusability for the treatment of dye-contaminated wastewater.

15.
Int J Biol Macromol ; 234: 123523, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796570

RESUMO

There is a dire need to find an efficient, cost-effective, sustainable, and environment-friendly adsorbent for the removal of anionic pollutants such as dyes from waste effluent. In this work, a cellulose-based cationic adsorbent was designed and utilized for methyl orange and reactive black 5 anionic dyes adsorption from an aqueous medium. Solid-state nuclear magnetic resonance spectroscopy (NMR) revealed the successful modification of cellulose fibers, and dynamic light scattering (DLS) evaluations showed the levels of charge densities. Furthermore, various models for adsorption equilibrium isotherm were utilized to understand the adsorbent characteristics, with the Freundlich isotherm model providing an excellent fit for the experimental results. The modelled maximum adsorption capacity was as much as 1010 mg/g for both model dyes. The dye adsorption was also confirmed using EDX. It was noted that the dyes were chemically adsorbed through the ionic interaction that can be reversed using sodium chloride solution. Overall, the cationized cellulose is inexpensive, environment-friendly, nature-driven, and recyclable making it an appealing adsorbent feasible for the dye removal from textile wastewater effluent.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Celulose/química , Poluentes Químicos da Água/química , Águas Residuárias , Cátions/química , Adsorção , Cinética
16.
Int J Biol Macromol ; 252: 126447, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633563

RESUMO

The aim of this study is to prepare an eco-friendly bioadsorbent by graft copolymerization and modification from hemp fiber including bio-macromolecules such as cellulose, hemicellulose and lignin for anionic dyes adsorption from aqueous solutions, and to investigate adsorptive properties. The prepared cellulose-supported bioadsorbent (TEPA-(GMA-g-HF)) was characterized in detail using SEM-EDX, STEM, FTIR, XRD, TGA and BET techniques and calculating the point of zero charge. It was used as an adsorbent to remove three different anionic dyes, Remazol Brilliant Blue R (RBBR), Reactive Red 120 (RR120) and Reactive yellow 160 (RY160) from the aqueous medium. The effects of adsorbent amount, pH, initial dye concentration, time and temperature on the adsorption were investigated. From the results, it was determined that the adsorption of all three dyes to the developed fibrous bioadsorbent was more compatible with the pseudo-second-order kinetic and the Langmuir isotherm model. It was found that the adsorption capacity increased with increasing temperature, and the adsorption capacity at 298 K was 91.70 mg/g for RBBR, 83.33 for RY160 and 76.34 mg/g for RR120, respectively. Dye removal efficiencies were provided as approximately 100 % at acidic pHs. This high removal efficiency has also achieved in the dense matrix medium, and even after five consecutive reused.


Assuntos
Cannabis , Poluentes Químicos da Água , Corantes/química , Celulose/química , Temperatura , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-36613153

RESUMO

In this work, a cost-effective chitin-based magnesium oxide (CHt@MgO) biocomposite with excellent anionic methyl orange (MO) dye removal efficiency from water was developed. The CHt@MgO biocomposite was characterized by FT-IR, XRD, SEM-EDX, and TGA/DTG. Results proved the successful synthesis of CHt@MgO biocomposite. Adsorption of MO on the CHt@MgO biocomposite was optimized by varying experimental conditions such as pH, amount of adsorbent (m), contact time (t), temperature (T), and initial MO concentration (Co). The optimized parameters for MO removal by CHt@MgO biocomposite were as follows: pH, 6; m, 2 g/L; t, 120 min. Two common isotherm models (Langmuir and Freundlich) and three kinetic models (pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD)) were tested for experimental data fitting. Results showed that Langmuir and PFO were the most suitable to respectively describe equilibrium and kinetic results on the adsorption of MO adsorption on CHt@MgO biocomposite. The maximum Langmuir monolayer adsorption capacity (qm) on CHt@MgO biocomposite toward MO dye was 252 mg/g at 60 °C. The reusability tests revealed that CHt@MgO biocomposite possessed high (90.7%) removal efficiency after the fifth regeneration cycle.


Assuntos
Óxido de Magnésio , Poluentes Químicos da Água , Quitina , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
18.
Int J Biol Macromol ; 253(Pt 5): 127114, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778584

RESUMO

An eco-friendly cationic polyacrylamide (CPAM)-modified diatomite/Ce(III)-crosslinked sodium alginate hybrid aerogel (CPAM-Dia/Ce-SA) was synthesized successfully and characterized by SEM-EDS, XRD, FTIR, UV-Vis and XPS. Adsorption performance, interaction mechanism and reusability of CPAM-Dia/Ce-SA used for the removal of acid blue 113 (AB 113), acid blue 80 (AB 80), acid yellow 117 (AY 117), Congo red (CR) and Direct Green 6 (DG 6) anionic dyes from aqueous media were investigated in detail. The results demonstrate that CPAM-Dia/Ce-SA aerogel is macroscopic polymer hybrid spheres with a particle size of around 1.3 mm, unique undulating mountain-like surface and porous mesostructure, and exhibits outstanding adsorption capacity for anionic dyes and good reusability. The maximum adsorption amounts of AB 113, AB 80, AY 117, CR and DG 6 by CPAM-Dia/Ce-SA were 3008, 1208, 914, 1832 and 1232 mg/g at pH 2.0, 60 min contact time and 25 °C, and corresponding removal efficiency reached individually 97.5, 96.6, 99.7, 99.9 and 98.5 % respectively and were less affected by increasing pH up to 10.0. Dye adsorption behaviour and adsorption processes with spontaneous and exothermic nature were perfectly interpreted by the Langmuir and Pseudo-second-order rate models respectively. Physicochemical and multisite-H-bonding synergies promoted the ultrastrong biosorption of anionic dyes by CPAM-Dia/Ce-SA.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Adsorção , Alginatos/química , Poluentes Químicos da Água/química , Cinética , Vermelho Congo/química , Água , Concentração de Íons de Hidrogênio
19.
Artigo em Inglês | MEDLINE | ID: mdl-37284953

RESUMO

In this study, chitosan nanoparticles (ChNs) were used as an adsorbent for single and simultaneous uptake of cationic (methylene blue (MB)) and anionic (methyl orange (MO)) dyes. ChNs were prepared based on the ionic gelation method using sodium tripolyphosphate (TPP) and characterized by zetasizer, FTIR, BET, SEM, XRD, and pHPZC. The studied parameters that affect removal efficiency included pH, time, and dyes' concentration. The results showed that in single-adsorption mode, the removal of MB is better in alkaline pH, contrary to MO uptake which presents higher removal efficiency in acidic media. The simultaneous removal of MB and MO from the mixture solution by ChNs could be achieved under neutral conditions. The adsorption kinetic results showed that adsorption of MB and MO for both single-adsorption and binary adsorption systems comply with the pseudo-second-order model. Langmuir, Freundlich, and Redlich-Peterson isotherms were used for the mathematical description of single-adsorption equilibrium, while non-modified Langmuir and extended Freundlich isotherms were used to fit the co-adsorption equilibrium results. The maximum adsorption capacities of MB and MO in a single dye adsorption system were 315.01 and 257.05 mg/g for MB and MO, respectively. On the other hand, and for binary adsorption system, the adsorption capacities were 49.05 and 137.03 mg/g, respectively. The adsorption capacity of MB decreases in solution containing MO and vice versa, suggesting an antagonistic behavior of MB and MO on ChNs. Overall, ChNs could be a candidate for single and binary removal of MB and MO in dye-containing wastewater.

20.
Environ Sci Pollut Res Int ; 30(20): 58684-58696, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36997777

RESUMO

Sapelli wood sawdust-derived magnetic activated carbon (SWSMAC) was produced by single-step pyrolysis using KOH and NiCl2 as activating and magnetization agents. SWSMAC was characterized by several techniques (SEM/EDS, N2 adsorption/desorption isotherms, FTIR, XRD, VSM, and pHPZC) and applied in the brilliant blue FCF dye adsorption from an aqueous medium. The obtained SWSMAC was a mesoporous material and showed good textural properties. Metallic nanostructured Ni particles were observed. Also, SWSMAC exhibited ferromagnetic properties. In the adsorption experiments, adequate conditions were an adsorbent dosage of 0.75 g L-1 and a solution pH of 4. The adsorption was fast, and the pseudo-second-order demonstrated greater suitability to the kinetic data. The Sips model fitted the equilibrium data well, and the maximum adsorption capacity predicted by this model was 105.88 mg g-1 (at 55 °C). The thermodynamic study revealed that the adsorption was spontaneous, favorable, and endothermic. Besides, the mechanistic elucidation suggested that electrostatic interactions, hydrogen bonding, π-π interactions, and n-π interactions were involved in the brilliant blue FCF dye adsorption onto SWSMAC. In summary, an advanced adsorbent material was developed from waste by single-step pyrolysis, and this material effectively adsorbs brilliant blue FCF dye.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Madeira , Poluentes Químicos da Água/química , Termodinâmica , Cinética , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Azul de Metileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA