Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 129(1): 1-6, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448693

RESUMO

The timing of motor commands is critical for task performance. A well-known example is rapidly raising the arm while standing upright. Here, reaction forces from the arm movement to the body are countered by leg and trunk muscle activity starting before any sensory feedback from the perturbation and often before the onset of arm muscle activity. Despite decades of research on the patterns, modifiability, and neural basis of these "anticipatory postural adjustments," it remains unclear why asynchronous motor commands occur. Simple accuracy considerations appear unlikely since temporally advanced motor commands displace the body from its initial position. Effort is a credible and overlooked factor that has successfully explained coordination patterns of many behaviors including gait and reaching. We provide the first use of optimal control to address this question. Feedforward commands were applied to a body mass mechanically linked to a rapidly moving limb mass. We determined the feedforward actions with the lowest cost according to an explicit criterion, accuracy alone versus accuracy + effort. Accuracy costs alone led to synchronous activation of the body and limb controllers. Adding effort to the cost resulted in body commands preceding limb commands. This sequence takes advantage of the body's momentum in one direction to counter the limb's reaction force in the opposite direction, allowing a lower peak command and lower integral. With a combined accuracy + effort cost, temporal advancement was further impacted by various task goals and plant dynamics, replicating previous findings and suggesting further studies using optimal control principles.NEW & NOTEWORTHY An important goal in the fields of sensorimotor neuroscience and biomechanics is to explain the timing of different muscles during behavior. Here, we propose that energy and accuracy considerations underlie the asynchronous onset of postural and arm muscles during rapid movement. Our novel model-based framework replicates a broad range of observations across varying task demands and plant dynamics and offers a new perspective to study motor timing.


Assuntos
Movimento , Postura , Postura/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Braço/fisiologia , Extremidade Superior , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Eletromiografia/métodos
2.
Exp Brain Res ; 240(9): 2401-2411, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35833953

RESUMO

This study investigated transfer of training from upper extremity limbs (the index fingers) to the lower extremity limbs (the legs) for performance of three gait sequences of different difficulty. Fifteen subjects participated in the study. Subjects in an iPad training group practiced by sequentially moving their left-and right-hand index fingers across tiles to each of three targets displayed on an iPad for 20 trials. Subjects in a gait training group practiced by sequentially walking across tiles to each of the 3 targets displayed on a screen for 20 trials. A no practice group did not receive practice trials. Immediately following practice of each level of difficulty, a transfer test (20 trials) was given for which subjects walked to the target just practiced. A retention test of 36 trials (12 trials at each difficulty level) was administered 20 min following performance of the last transfer test trial. The retention test showed that reaction times were shorter for the iPad training than gait training and no training groups; anticipatory postural adjustment times were equivalent for the iPad and gait training groups, but shorter than for the no training group; and movement times were shorter for the iPad training group than for the gait training and no training groups. These results suggest that iPad training (upper extremity) followed by performance of gait training (lower extremity) had greater benefits for learning (as measured by the delayed retention test) the gait sequences than practicing the actual gait sequences themselves.


Assuntos
Marcha , Destreza Motora , Humanos , Extremidade Inferior , Extremidade Superior , Caminhada
3.
Exp Brain Res ; 240(12): 3315-3325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36318317

RESUMO

Previous studies have revealed several deficits in anticipatory postural adjustments (APAs) during voluntary movements while standing in individuals with bilateral spastic cerebral palsy (BSCP). However, it remains unclear whether compensatory postural adjustments (CPAs) during movement increase to compensate for APA deficits. We investigated the anticipatory and compensatory activities of postural muscles during voluntary movement while standing in adolescents and young adults with BSCP. The study included seven participants with BSCP with level II on the Gross Motor Function Classification System (GMFCS), seven with BSCP with level III on the GMFCS, and fourteen healthy controls. The participants stood on a force platform and lifted a load under two weight conditions (light and heavy). The electromyographic activities of postural muscles were analyzed at time intervals typical for APAs and CPAs. The percentage of muscle activity in the CPA time epoch against the total muscle activity during the APA and CPA time epochs was higher in the two BSCP groups than in the control group. In the control group, a load-related modulation was observed only in the APA time epoch, whereas in the BSCP-II group, the load-related increase was observed in both the APA and CPA time epochs. No load-related modulations were observed in the BSCP-III group. These findings suggest that adolescents and young adults with BSCP exhibit an increase in the relative contribution of CPAs during voluntary movement and that there exist severity-related differences in the modulation of APAs and CPAs.


Assuntos
Paralisia Cerebral , Equilíbrio Postural , Posição Ortostática , Adolescente , Humanos , Adulto Jovem , Paralisia Cerebral/fisiopatologia , Eletromiografia/métodos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Levantamento de Peso/fisiologia
4.
Exp Brain Res ; 240(4): 1105-1116, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132466

RESUMO

Anticipatory postural adjustments (APAs) represent the feedforward mechanism of neuromuscular control essential for maintaining balance under predictable perturbations. The importance of vision as a distal sensory modality in the generation of APAs is well established. However, the capabilities of external cues in generating APAs are less explored. In the present study, vibratory cue was investigated for its reliability among healthy individuals in generating anticipatory response under external perturbation in the absence of vision. Ten participants, in quiet stance, were provided with external perturbation in the form of pendulum impact in anterior-posterior (AP) direction under conditions of: both vision and vibratory cue absent; vision present but vibratory cue was absent; vision and vibratory cue both were present; only vibratory cue is present with vision being absent. EMG activities of the leg muscles and displacement of center of pressure (COP) in AP direction were recorded. The data were later analyzed and quantified in the time frame of anticipatory and compensatory phases. The results showed that with training, participants were able to generate significant APAs relying on the vibratory cue alone. Improvement in APAs was accompanied by minimizing the need for larger CPA and improved stability (COP displacement) under perturbation. The study outcome indicates the possibility of using vibratory cues for APA-based interventions.


Assuntos
Sinais (Psicologia) , Contração Muscular , Eletromiografia/métodos , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Reprodutibilidade dos Testes
5.
J Neurophysiol ; 126(4): 1345-1360, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433001

RESUMO

How does the brain coordinate concurrent adaptation of arm movements and standing posture? From previous studies, the postural control system can use information about previously adapted arm movement dynamics to plan appropriate postural control; however, it is unclear whether postural control can be adapted and controlled independently of arm control. The present study addresses that question. Subjects practiced planar reaching movements while standing and grasping the handle of a robotic arm, which generated a force field to create novel perturbations. Subjects were divided into two groups, for which perturbations were introduced in either an abrupt or a gradual manner. All subjects adapted to the perturbations while reaching with their dominant (right) arm and then switched to reaching with their nondominant (left) arm. Previous studies of seated reaching movements showed that abrupt perturbation introduction led to transfer of learning between arms, but gradual introduction did not. Interestingly, in this study neither group showed evidence of transferring adapted control of arm or posture between arms. These results suggest primarily that adapted postural control cannot be transferred independently of arm control in this task paradigm. In other words, whole body postural movement planning related to a concurrent arm task is dependent on information about arm dynamics. Finally, we found that subjects were able to adapt to the gradual perturbation while experiencing very small errors, suggesting that both error size and consistency play a role in driving motor adaptation.NEW & NOTEWORTHY This study examined adaptation of arm and postural control to novel dynamics while standing and reaching and subsequent transfer between reaching arms. Neither arm nor postural control was transferred between arms, suggesting that postural planning is highly dependent on the concurrent arm movement.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiologia , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Posição Ortostática , Transferência de Experiência/fisiologia , Adulto , Humanos , Adulto Jovem
6.
J Phys Ther Sci ; 33(11): 857-861, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34776623

RESUMO

[Purpose] We investigated the influence of gait speed on the movement strategy during gait initiation. [Participants and Methods] This study included 21 young healthy individuals (11 males and 10 females; mean age, 21.7 ± 0.5 years; mean height, 166.1 ± 9.8 cm; and mean weight, 57.3 ± 11.2 kg). A three-dimensional motion analyzer and strain gauge force platform were used in this study. The measurement task consisted of gait initiation from the quiet stance; the two measurement conditions were normal gait and the highest speed. The analysis interval was from the start of the center of pressure migration to the heel contact at the first step of the swing limb. The center of gravity, center of pressure, joint movements, step length, and step time during the anticipatory postural control (from the start of center of pressure migration to swing leg-heel off) and swing (swing leg-heel off to swing leg-heel contact) phases were analyzed. [Results] Significant differences were observed in the center of gravity, center of pressure, hip flexion, abduction movement, stance-limb ankle dorsiflexion movement during the anticipatory postural control phase, and step time during the anticipatory postural control and swing phases. The stance-limb ankle plantar flexion movement and step length did not differ significantly in the swing phase. [Conclusion] When the gait speed increases, fluctuations in the joint movements increase as the center of pressure displacement increases, thus requiring complex control.

7.
J Neurophysiol ; 123(2): 529-547, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851559

RESUMO

The ability to maintain stable, upright standing in the face of perturbations is a critical component of daily life. A common strategy for resisting perturbations and maintaining stability is muscle coactivation. Although arm muscle coactivation is often used during adaptation of seated reaching movements, little is known about postural muscle activation during concurrent adaptation of arm and standing posture to novel perturbations. In this study we investigate whether coactivation strategies are employed during adaptation of standing postural control, and how these strategies are prioritized for adaptation of standing posture and arm reaching, in two different postural stability conditions. Healthy adults practiced planar reaching movements while grasping the handle of a robotic arm and standing on a force plate; the robotic arm generated a velocity-dependent force field that created novel perturbations in the forward (more stable) or backward (less stable) direction. Surprisingly, the degree of arm and postural adaptation was not influenced by stability, with similar adaptation observed between conditions in the control of both arm movement and standing posture. We found that an early coactivation strategy can be used in postural adaptation, similar to what is observed in adaptation of arm reaching movements. However, the emergence of a coactivation strategy was dependent on perturbation direction. Despite similar adaptation in both directions, postural coactivation was largely specific to forward perturbations. Backward perturbations led to less coactivation and less modulation of postural muscle activity. These findings provide insight into how postural stability can affect prioritization of postural control objectives and movement adaptation strategies.NEW & NOTEWORTHY Muscle coactivation is a key strategy for modulating movement stability; this is centrally important in the control of standing posture. Our study investigates the little-known role of coactivation in adaptation of whole body standing postural control. We demonstrate that an early coactivation strategy can be used in postural adaptation, but muscle activation strategies may differ depending on postural stability conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Antecipação Psicológica/fisiologia , Braço/fisiologia , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Posição Ortostática , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
8.
Somatosens Mot Res ; 37(3): 213-221, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32538238

RESUMO

The purpose of this study was to determine whether the rhythmic movements or cues enhance the anticipatory postural adjustment (APA) of gait initiation. Healthy humans initiated gait in response to an auditory start cue (third cue). A first auditory cue was given 8 s before the start cue, and a second auditory cue was given 3 s before the start cue. The participants performed the rhythmic medio-lateral weight shift (ML-WS session), rhythmic anterior-posterior weight shift (AP-WS session), or rhythmic arm swing (arm swing session) in the time between the first and second cues. In the rhythmic cues session, rhythmic auditory cues with a frequency of 1 Hz were given in this time. In the stationary session, the participants maintained stationary stance in this time. The APA and initial step movement preceded by those rhythmic movements or cues were compared with those in the stationary session. The temporal characteristics of the initial step movement of the gait initiation were not changed by the rhythmic movements or cues. The medio-lateral displacement of the APA in the ML-WS and arm swing sessions was significantly greater than that in the stationary session. The anterior-posterior displacement of the APA in the rhythmic cues and arm swing sessions was significantly greater than that in the stationary session. Taken together, the rhythmic movements and cues enhance the APA of gait initiation. The present finding may be a clue or motive for the future investigation for using rhythmic movements or cues as the preparatory activity to enlarge the small APA of gait initiation in the patients with Parkinson's disease.


Assuntos
Antecipação Psicológica/fisiologia , Percepção Auditiva/fisiologia , Fenômenos Biomecânicos/fisiologia , Sinais (Psicologia) , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tempo/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Neuroeng Rehabil ; 17(1): 146, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129334

RESUMO

OBJECTIVES: This study examined if people with Parkinson's and freezing of gait pathology (FoG) could be trained to increase preparatory weight-shift amplitude, and facilitate step initiation during FoG. METHODS: Thirty-five people with Parkinson's and FoG attempted to initiate forward walking from a stationary position caused by a freeze (n = 17, FoG-F) or voluntarily stop (n = 18, FoG-NF) in a Baseline condition and two conditions where an increased weight-shift amplitude was trained via: (i) explicit verbal instruction, and (ii) implicit movement analogies. RESULTS: At Baseline, weight-shift amplitudes were smaller during: (i) unsuccessful, compared to successful step initiations (FoG-F group), and (ii) successful step initiations in the FoG-F group compared to FoG-NF. Both Verbal and Analogy training resulted in significant increases in weight-shift amplitude in both groups, and a corresponding pronounced reduction in unsuccessful attempts to initiate stepping (FoG-F group). CONCLUSIONS: Hypometric preparatory weight-shifting is associated with failure to initiate forward stepping in people with Parkinson's and FoG. However, impaired weight-shift characteristics are modifiable through conscious strategies. This current study provides a novel and critical evaluation of preparatory weight-shift amplitudes during FoG events. The intervention described represents an attractive 'rescue' strategy and should be further scrutinised regarding limitations posed by physical and cognitive deficits.


Assuntos
Atenção/fisiologia , Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Doença de Parkinson/reabilitação , Idoso , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
11.
Exp Brain Res ; 235(3): 713-730, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27866261

RESUMO

We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.


Assuntos
Antecipação Psicológica/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Postura , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Tempo de Reação/fisiologia , Adulto Jovem
12.
Exp Brain Res ; 235(3): 647-659, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27847987

RESUMO

Hemispheric lateralization of pain processing was reported with overactivation of the right frontal lobe. Specifically in chronic low back pain (CLBP), functional changes in the left primary motor cortex (M1) with impaired anticipatory postural activation (APA) of trunk muscles have been observed. Given the connections between frontal and M1 areas for motor planning, it is hypothesized that the pain side could differently influence M1 function and APA of paravertebral multifidus (MF) muscles. This study aimed at testing whether people with right- versus left-sided CLBP showed different M1 excitability and APA. Thirty-five individuals with lateralized CLBP (19 right-sided and 16 left-sided) and 13 pain-free subjects (normative values) were tested for the excitability of MF M1 area (active motor threshold-AMT) with transcranial magnetic stimulation and for the latency of MF APA during bilateral shoulder flexion and during unilateral hip extension in prone lying. In the right-sided CLBP group, the AMT of both M1 areas was lower than in the left-sided group and the pain-free subjects; the latency of MF APA was shorter in bilateral shoulder flexion and in the left hip extension tasks as compared to the left-sided group. In CLBP, an earlier MF APA was correlated with lower AMT in both tasks. People with right-sided CLBP presented with increased M1 excitability in both hemispheres and earlier MF APA. These results likely rely on cortical motor adaptation related to the tasks and axial muscles tested. Future studies should investigate whether CLBP side-related differences have a clinical impact, e.g. in diagnosis and intervention.


Assuntos
Lateralidade Funcional/fisiologia , Dor Lombar/patologia , Dor Lombar/fisiopatologia , Córtex Motor/fisiopatologia , Músculo Esquelético/fisiopatologia , Postura/fisiologia , Adulto , Idoso , Análise de Variância , Doença Crônica , Avaliação da Deficiência , Eletromiografia , Potencial Evocado Motor/fisiologia , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Medição da Dor , Inquéritos e Questionários , Estimulação Magnética Transcraniana
13.
J Neurophysiol ; 116(6): 2936-2949, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27683888

RESUMO

Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Postura , Análise de Variância , Braço/inervação , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
14.
Exp Brain Res ; 234(4): 1047-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708519

RESUMO

The present study investigated the attention allocation during reactive stepping using a continuous finger-tapping task. Ten healthy young subjects were recruited to participate in this study. Subjects were required to perform a rapid voluntary step with either left or right leg after hearing an auditory tone while tapping their right index finger on a handhold numeric keypad. Step initiation conditions included simple and choice reaction forward stepping with three variants of continuous tapping task that were: (1) single task--no concurrent finger-tapping task; (2) dual task easy--one-button tapping task; (3) dual task hard--four-button tapping task. Types of anticipatory postural adjustment (APA) were determined by the center of pressure trajectory. Reaction time, APA duration, and stepping latency were compared between APA types and various dual-task conditions. Wavelet analysis was performed on the stimulus-locked finger-tapping data to determine the frequency change of tapping speed related to reactive stepping. Results showed that postural performance was negatively affected only by the high-attention-demanding cognitive task. Significant reduction of finger-tapping speed post-stimulus presentation was observed across all test conditions, indicating attention shift during the execution of a step. In addition, the DTH condition induced early postural prioritization in choice reaction stepping when different motor programs needed to be planned and executed. Error APA also triggered larger deterioration of tapping performance compared to correct APA, indicating the perceived error and the remedial action require additional attentional resources.


Assuntos
Atenção/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Estimulação Acústica/métodos , Feminino , Dedos/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Caminhada/psicologia , Adulto Jovem
15.
Exp Brain Res ; 234(3): 659-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26497990

RESUMO

This study explored the directional specificity of fear of falling (FoF) effects on the stabilizing function of anticipatory postural adjustments (APA). Participants (N = 71) performed a series of lateral leg raises from an elevated surface in three conditions: in the "Control condition", participants stood at the middle of the surface; in the two test conditions, participants were positioned at the lateral edge of the surface so that the shift of the whole-body centre-of-mass during APA for leg raising was directed towards the edge ("Approach condition") or was directed away from the edge ("Avoidance condition"). Results showed that the amplitude of APA was lower in the "Approach condition" than in the "Control condition" (p < .01); this reduction was compensated for by an increase in APA duration (p < .05), so that both postural stability and motor performance (in terms of peak leg velocity, final leg posture and movement duration) remained unchanged. These changes in APA parameters were not present in the "Avoidance condition". Participants further self-reported a greater FoF (p < .001) and a lower ability to avoid a fall (p < .001) in the "Approach condition" (but not in the "Avoidance condition") than in the "Control condition". The results of this study show that the effects of FoF do not solely depend on initial environmental conditions, but also on the direction of APA relative to the location of the postural threat. These results support the so-called Motivational Direction Hypothesis, according to which approach and avoidance behaviours are primed by emotional state.


Assuntos
Antecipação Psicológica/fisiologia , Perna (Membro)/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Neurophysiol ; 111(7): 1466-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371293

RESUMO

Postural control is significantly affected by the postural base of support; however, the effects on postural adaptation are not well understood. Here we investigated how adaptation and transfer of anticipatory postural control are affected by stance width. Subjects made reaching movements in a novel dynamic environment while holding the handle of a force-generating robotic arm. Each subject initially adapted to the dynamics while standing in a wide stance and then switched to a narrow stance, or vice versa. Our hypothesis is that anticipatory postural control, reflected in center of pressure (COP) movement, is not affected by stance width, as long as the control remains within functional limits; therefore we predicted that subjects in either stance would show similar COP movement by the end of adaptation and immediately upon transfer to the other stance. We found that both groups showed similar adaptation of postural control, by using different muscle activation strategies to account for the differing stance widths. One group, after adapting in wide stance, transferred similar postural control to narrow stance, by modifying their muscle activity to account for the new stance. Interestingly, the other group showed an increase in postural control when transferring from narrow to wide stance, associated with no change in muscle activity. These results confirm that adaptation of anticipatory postural control is not affected by stance width, as long as the control remains within biomechanical limits. However, transfer of control between stance widths is affected by the initial context in which the task is learned.


Assuntos
Adaptação Fisiológica/fisiologia , Movimento/fisiologia , Equilíbrio Postural , Postura/fisiologia , Transferência de Experiência/fisiologia , Análise de Variância , Braço/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Adulto Jovem
17.
Front Neurol ; 15: 1286856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450075

RESUMO

Purpose: Evidence suggests that transcranial direct current stimulation (tDCS) can enhance motor performance and learning of hand tasks in persons with chronic stroke (PCS). However, the effects of tDCS on the locomotor tasks in PCS are unclear. This pilot study aimed to: (1) determine aggregate effects of anodal tDCS combined with step training on improvements of the neural and biomechanical attributes of stepping initiation in a small cohort of persons with chronic stroke (PCS) over a 4-week training program; and (2) assess the feasibility and efficacy of this novel approach for improving voluntary stepping initiation in PCS. Methods: A total of 10 PCS were randomly assigned to one of two training groups, consisting of either 12 sessions of VST paired with a-tDCS (n = 6) or sham tDCS (s-tDCS, n = 4) over 4 weeks, with step initiation (SI) tests at pre-training, post-training, 1-week and 1-month follow-ups. Primary outcomes were: baseline vertical ground reaction force (B-vGRF), response time (RT) to initiate anticipatory postural adjustment (APA), and the retention of B-VGRF and RT. Results: a-tDCS paired with a 4-week VST program results in a significant increase in paretic weight loading at 1-week follow up. Furthermore, a-tDCS in combination with VST led to significantly greater retention of paretic BWB compared with the sham group at 1 week post-training. Clinical implications: The preliminary findings suggest a 4-week VST results in improved paretic limb weight bearing (WB) during SI in PCS. Furthermore, VST combined with a-tDCS may lead to better retention of gait improvements (NCT04437251) (https://classic.clinicaltrials.gov/ct2/show/NCT04437251).

18.
Hum Mov Sci ; 96: 103255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39089055

RESUMO

Individuals with bilateral spastic cerebral palsy (BSCP) reportedly has problems with anticipatory postural adjustments (APAs) while standing. However, the use of coactivation strategy in APAs in individuals with BSCP has conflicting evidence. Hence, this study aimed to investigate postural muscle activities in BSCP during unilateral arm flexion task in which postural perturbations occur in the sagittal, frontal, and horizontal planes. We included 10 individuals with BSCP with level II on the Gross Motor Function Classification System (BSCP group) and 10 individuals without disability (control group). The participants stood on a force platform and rapidly flexed a shoulder from 0° to 90° at their own timing. Surface electromyograms were recorded from the rectus femoris, medial hamstring, tibialis anterior, and medial gastrocnemius. The control group showed a mixture of anticipatory activation and inhibition of postural muscles, whereas the BSCP group predominantly exhibited anticipatory activation with slight anticipatory inhibition. Compared with the control group, the BSCP group tended to activate the ipsilateral and contralateral postural muscles and the agonist-antagonist muscle pairs. The BSCP group had a larger disturbance in postural equilibrium, quantified by the peak displacement of center of pressure during the unilateral arm flexion, than those without disability. Individuals with BSCP may use coactivation strategy, mainly the anticipatory activation of postural muscle activity, during a task that requires a selective postural muscle activity to maintain stable posture.


Assuntos
Braço , Paralisia Cerebral , Eletromiografia , Músculo Esquelético , Equilíbrio Postural , Humanos , Paralisia Cerebral/fisiopatologia , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Equilíbrio Postural/fisiologia , Braço/fisiopatologia , Adulto Jovem , Antecipação Psicológica/fisiologia , Adulto , Posição Ortostática , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Postura/fisiologia , Adolescente
19.
Front Neurorobot ; 18: 1401931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021504

RESUMO

Neurological diseases are observed in approximately 1 billion people worldwide. A further increase is foreseen at the global level as a result of population growth and aging. Individuals with neurological disorders often experience cognitive, motor, sensory, and lower extremity dysfunctions. Thus, the possibility of falling and balance problems arise due to the postural control deficiencies that occur as a result of the deterioration in the integration of multi-sensory information. We propose a novel rehabilitation framework, Integrated Balance Rehabilitation (I-BaR), to improve the effectiveness of the rehabilitation with objective assessment, individualized therapy, convenience with different disability levels and adoption of assist-as-needed paradigm and, with integrated rehabilitation process as whole, that is, ankle-foot preparation, balance, and stepping phases, respectively. Integrated Balance Rehabilitation allows patients to improve their balance ability by providing multi-modal feedback: visual via utilization of virtual reality; vestibular via anteroposterior and mediolateral perturbations with the robotic platform; proprioceptive via haptic feedback.

20.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167617

RESUMO

Lumbar erector spinae (LES) contribute to spine postural and voluntary control. Transcranial magnetic stimulation (TMS) preferentially depolarizes different neural circuits depending on the direction of electrical currents evoked in the brain. Posteroanterior current (PA-TMS) and anteroposterior (AP-TMS) current would, respectively, depolarize neurons in the primary motor cortex (M1) and the premotor cortex. These regions may contribute differently to LES control. This study examined whether responses evoked by PA- and AP-TMS are different during the preparation and execution of LES voluntary and postural tasks. Participants performed a reaction time task. A Warning signal indicated to prepare to flex shoulders (postural; n = 15) or to tilt the pelvis (voluntary; n = 13) at the Go signal. Single- and paired-pulse TMS (short-interval intracortical inhibition-SICI) were applied using PA- and AP-TMS before the Warning signal (baseline), between the Warning and Go signals (preparation), or 30 ms before the LES onset (execution). Changes from baseline during preparation and execution were calculated in AP/PA-TMS. In the postural task, MEP amplitude was higher during the execution than that during preparation independently of the current direction (p = 0.0002). In the voluntary task, AP-MEP amplitude was higher during execution than that during preparation (p = 0.016). More PA inhibition (SICI) was observed in execution than that in preparation (p = 0.028). Different neural circuits are preferentially involved in the two motor tasks assessed, as suggested by different patterns of change in execution of the voluntary task (AP-TMS, increase; PA-TMS, no change). Considering that PA-TMS preferentially depolarize neurons in M1, it questions their importance in LES voluntary control.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Eletromiografia , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA