Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(25): 5569-5586.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016469

RESUMO

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Humanos , Células Apresentadoras de Antígenos , Antígenos CD4/metabolismo , Antígenos HLA/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular , Genoma Humano
2.
Cell ; 178(4): 1016-1028.e13, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398327

RESUMO

T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Genes MHC Classe I/imunologia , Antígenos HLA/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Doadores de Sangue , Linfócitos T CD8-Positivos/metabolismo , Feminino , Técnicas de Inativação de Genes , Genes MHC Classe I/genética , Granzimas/metabolismo , Células HEK293 , Antígenos HLA/genética , Humanos , Proteínas de Neoplasias/genética , Transdução Genética , Transfecção
3.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33740418

RESUMO

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Assuntos
Epitopos/genética , Antígenos de Histocompatibilidade Classe I/genética , Leucemia Mieloide Aguda/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Epigênese Genética/genética , Epigênese Genética/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia/métodos , Leucemia Mieloide Aguda/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Mutação/imunologia , Células-Tronco Neoplásicas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia
4.
Semin Immunol ; 66: 101727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764021

RESUMO

The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos HLA , Apresentação de Antígeno , Peptídeos
5.
Mol Cell Proteomics ; : 100831, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168282

RESUMO

Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit-determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.

6.
Mol Ther ; 32(9): 2892-2904, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39068512

RESUMO

Immune-based therapeutic interventions recognizing proteins localized on the cell surface of cancer cells are emerging as a promising cancer treatment. Antibody-based therapies and engineered T cells are now approved by the Food and Drug Administration to treat some malignancies. These therapies utilize a few cell surface proteins highly expressed on cancer cells to release the negative regulation of immune activation that limits antitumor responses (e.g., PD-1, PD-L1, CTLA4) or to redirect the T cell specificity toward blood cancer cells (e.g., CD19 and B cell maturation antigen). One limitation preventing broader application of these novel therapeutic strategies to all cancer types is the lack of suitable target antigens for all indications owing in part to the challenges in identifying such targets. Ideal target antigens are cell surface proteins highly expressed on malignant cells and absent in healthy tissues. Technological advances in mass spectrometry, enrichment protocols, and computational tools for cell surface protein isolation and annotation have recently enabled comprehensive analyses of the cancer cell surface proteome, from which novel immunotherapeutic target antigens may emerge. Here, we review the most recent progress in this field.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Neoplasias , Proteoma , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Animais , Proteômica/métodos , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo
7.
Mol Cell Proteomics ; 20: 100032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592498

RESUMO

CD4+ T cell responses are crucial for inducing and maintaining effective anticancer immunity, and the identification of human leukocyte antigen class II (HLA-II) cancer-specific epitopes is key to the development of potent cancer immunotherapies. In many tumor types, and especially in glioblastoma (GBM), HLA-II complexes are hardly ever naturally expressed. Hence, little is known about immunogenic HLA-II epitopes in GBM. With stable expression of the class II major histocompatibility complex transactivator (CIITA) coupled to a detailed and sensitive mass spectrometry-based immunopeptidomics analysis, we here uncovered a remarkable breadth of the HLA-ligandome in HROG02, HROG17, and RA GBM cell lines. The effect of CIITA expression on the induction of the HLA-II presentation machinery was striking in each of the three cell lines, and it was significantly higher compared with interferon gamma (IFNÉ£) treatment. In total, we identified 16,123 unique HLA-I peptides and 32,690 unique HLA-II peptides. In order to genuinely define the identified peptides as true HLA ligands, we carefully characterized their association with the different HLA allotypes. In addition, we identified 138 and 279 HLA-I and HLA-II ligands, respectively, most of which are novel in GBM, derived from known GBM-associated tumor antigens that have been used as source proteins for a variety of GBM vaccines. Our data further indicate that CIITA-expressing GBM cells acquired an antigen presenting cell-like phenotype as we found that they directly present external proteins as HLA-II ligands. Not only that CIITA-expressing GBM cells are attractive models for antigen discovery endeavors, but also such engineered cells have great therapeutic potential through massive presentation of a diverse antigenic repertoire.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Nucleares/imunologia , Transativadores/imunologia , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Proteínas Nucleares/genética , Peptídeos/imunologia , Transativadores/genética
8.
Mol Cell Proteomics ; 20: 100080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845167

RESUMO

Mass spectrometry (MS) is the state-of-the-art methodology for capturing the breadth and depth of the immunopeptidome across human leukocyte antigen (HLA) allotypes and cell types. The majority of studies in the immunopeptidomics field are discovery driven. Hence, data-dependent tandem MS (MS/MS) acquisition (DDA) is widely used, as it generates high-quality references of peptide fingerprints. However, DDA suffers from the stochastic selection of abundant ions that impairs sensitivity and reproducibility. In contrast, in data-independent acquisition (DIA), the systematic fragmentation and acquisition of all fragment ions within given isolation m/z windows yield a comprehensive map for a given sample. However, many DIA approaches commonly require generating comprehensive DDA-based spectrum libraries, which can become impractical for studying noncanonical and personalized neoantigens. Because the amount of HLA peptides eluted from biological samples such as small tissue biopsies is typically not sufficient for acquiring both meaningful DDA data necessary for generating comprehensive spectral libraries and DIA MS measurements, the implementation of DIA in the immunopeptidomics translational research domain has remained limited. We implemented a DIA immunopeptidomics workflow and assessed its sensitivity and accuracy by matching DIA data against libraries with growing complexity-from sample-specific libraries to libraries combining 2 to 40 different immunopeptidomics samples. Analyzing DIA immunopeptidomics data against a complex multi-HLA spectral library resulted in a two-fold increase in peptide identification compared with sample-specific library and in a three-fold increase compared with DDA measurements, yet with no detrimental effect on the specificity. Furthermore, we demonstrated the implementation of DIA for sensitive personalized neoantigen discovery through the analysis of DIA data with predicted MS/MS spectra of clinically relevant HLA ligands. We conclude that a comprehensive multi-HLA library for DIA approach in combination with MS/MS prediction is highly advantageous for clinical immunopeptidomics, especially when low amounts of biological samples are available.


Assuntos
Antígenos de Histocompatibilidade , Peptídeos , Proteômica/métodos , Simulação por Computador , Biblioteca de Peptídeos , Espectrometria de Massas em Tandem
9.
J Immunoassay Immunochem ; 43(5): 467-479, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301912

RESUMO

Antigens derived from engulfed apoptotic bodies that are presented by dendritic cells can amplify Ag-specific T-cells. Accelerated co-cultured DC (acDC) strategy keeps lymphocytes in contact with differentiating DCs. Therefore, Ag-specific T-cell activation can occur during DC maturation. Our aim was to prepare DCs by acDC method and check the subsequent engulfment of the apoptotic body by acDC. We have proposed that this method could be feasible if we transfect the apoptotic bodies with the antigen. DCs were prepared using acDC method and their maturation markers were confirmed by flow cytometry. Ultraviolet was used for inducing apoptosis in the PBMCs and induction of apoptosis checked by propidium iodide and 7-aminoactinomycin D staining. Flow cytometry and immunohistochemistry were used for checking the uptake of apoptotic bodies by the DCs. The alloreactivity against apoptotic bodies was examined by enzyme-linked immunospot (ELISPOT) assay. Results showed that 40.4% of DCs could efficiently engulf the apoptotic bodies. The results indicated that acDC method is capable to isolate a high yield of DCs, and these cells could properly engulf the apoptotic bodies, more works should be performed to use this method for Ag discovery through delivering the Ag by apoptotic bodies into the DCs.


Assuntos
Células Dendríticas , Vesículas Extracelulares , Antígenos , Apoptose , Ativação Linfocitária , Linfócitos T
10.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150255

RESUMO

Conjugate vaccines against Streptococcus pneumoniae have significantly reduced the incidence of diseases caused by the serotypes included in those vaccines; however, there is still a need for vaccines that confer serotype-independent protection. In the current study, we have constructed a library of conserved surface proteins from S. pneumoniae and have screened for IL-17A and IL-22 production in human immune cells obtained from adenoidal/tonsillar tissues of children and IL-17A production in splenocytes from mice that had been immunized with a killed whole-cell vaccine or previously exposed to pneumococcus. A positive correlation was found between the rankings of proteins from human IL-17A and IL-22 screens, but not between those from human and mouse screens. All proteins were tested for protection against colonization, and we identified protective antigens that are IL-17A dependent. We found that the likelihood of finding a protective antigen is significantly higher for groups of proteins ranked in the top 50% of all three screens than for groups of proteins ranked in the bottom 50% of all three. The results thus confirmed the value of such screens for identifying Th17 antigens. Further, these experiments have evaluated and compared the breadth of human and mouse Th17 responses to pneumococcal colonization and have enabled the identification of potential vaccine candidates based on immunological responses in mouse and human cells.


Assuntos
Antígenos de Bactérias/imunologia , Portador Sadio/prevenção & controle , Interleucina-17/metabolismo , Interleucinas/metabolismo , Leucócitos Mononucleares/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Animais , Humanos , Camundongos Endogâmicos C57BL , Modelos Animais , Interleucina 22
11.
Proc Natl Acad Sci U S A ; 112(32): E4438-47, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216993

RESUMO

Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.


Assuntos
Biomarcadores/sangue , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Características de Residência , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Feminino , Ontologia Genética , Geografia , Humanos , Incidência , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino , Mali/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Curva ROC , Resultado do Tratamento , Uganda/epidemiologia
12.
Clin Immunol ; 168: 64-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181993

RESUMO

To characterize antibody specificities associated with pre-eclampsia (PE), bacterial displayed peptide library screening and evolution was applied to identify peptide epitopes recognized by plasma antibodies present in women with PE near the time of delivery. Pre-eclamptic women exhibited elevated IgG1 titers towards a peptide epitope KRPSCIGCK within the Epstein-Barr virus nuclear antigen 1 (EBNA-1). EBNA-1 epitope antibodies cross-reacted with a similar epitope within the extracellular N-terminus of the human G protein-coupled receptor, GPR50, expressed in human placental tissue and immortalized placental trophoblast cells. We observed increased antibody binding activity to epitopes from EBNA-1 and GPR50 among women with PE (n=42) compared to healthy-outcome pregnancies (n=43) and nulligravid samples (n=21). The EBNA-1 peptide potently blocked binding of the PE-associated antibody to the GPR50 epitope (IC50=58-81pM). These results reveal the existence of molecular mimicry between EBNA-1 and placental GPR50, supporting a mechanism for IgG1 deposition in the pre-eclamptic placenta.


Assuntos
Anticorpos Antivirais/imunologia , Herpesvirus Humano 4/imunologia , Proteínas do Tecido Nervoso/imunologia , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Receptores Acoplados a Proteínas G/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos Antivirais/metabolismo , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Epitopos/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Feminino , Células HEK293 , Herpesvirus Humano 4/metabolismo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imuno-Histoquímica , Proteínas do Tecido Nervoso/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Ligação Proteica/imunologia , Receptores Acoplados a Proteínas G/metabolismo
13.
Expert Rev Proteomics ; 13(1): 19-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26558506

RESUMO

Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.


Assuntos
Proteínas de Helminto/metabolismo , Proteoma/metabolismo , Schistosoma/fisiologia , Esquistossomose/parasitologia , Animais , Proteínas de Helminto/imunologia , Proteínas de Helminto/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Proteoma/imunologia , Proteoma/isolamento & purificação , Proteômica , Esquistossomose/diagnóstico , Esquistossomose/imunologia
14.
Parasitology ; 143(2): 236-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26864136

RESUMO

Immunomics is a relatively new field of research which integrates the disciplines of immunology, genomics, proteomics, transcriptomics and bioinformatics to characterize the host-pathogen interface. Herein, we discuss how rapid advances in molecular immunology, sophisticated tools and molecular databases are facilitating in-depth exploration of the immunome. In our opinion, an immunomics-based approach presides over traditional antigen and vaccine discovery methods that have proved ineffective for highly complex pathogens such as the causative agents of malaria, tuberculosis and schistosomiasis that have evolved genetic and immunological host-parasite adaptations over time. By using an integrative multidisciplinary approach, immunomics offers enormous potential to advance 21st century antigen discovery and rational vaccine design against complex pathogens such as the Plasmodium parasite.


Assuntos
Alergia e Imunologia/tendências , Biologia Computacional/tendências , Vacinas/imunologia , Animais , Bactérias/imunologia , Parasitos/imunologia , Vírus/imunologia
15.
Parasitol Res ; 115(7): 2705-13, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27026505

RESUMO

The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.


Assuntos
Antígenos/imunologia , Galinhas , Proteínas de Insetos/imunologia , Infestações por Ácaros/veterinária , Ácaros/imunologia , Doenças das Aves Domésticas/parasitologia , Animais , Antígenos/análise , Feminino , Proteínas de Insetos/análise , Masculino , Infestações por Ácaros/prevenção & controle , Ácaros/genética , Doenças das Aves Domésticas/prevenção & controle , Espectrometria de Massas em Tandem/veterinária , Transcriptoma , Vacinas/imunologia
16.
Biomolecules ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254700

RESUMO

Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Plasmodium falciparum , Pandemias , Eritrócitos
17.
Adv Sci (Weinh) ; 11(13): e2305750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342599

RESUMO

Deciphering cellular interactions is essential to both understand the mechanisms underlying a broad range of human diseases, but also to manipulate therapies targeting these diseases. Here, the formation of cell doublets resulting from specific membrane ligand-receptor interactions is discovered. Based on this phenomenon, the study developed DoubletSeeker, a novel high-throughput method for the reliable identification of ligand-receptor interactions. The study shows that DoubletSeeker can accurately identify T cell receptor (TCR)-antigen interactions with high sensitivity and specificity. Notably, DoubletSeeker effectively captured paired TCR-peptide major histocompatibility complex (pMHC) information during a highly complex library-on-library screening and successfully identified three mutant TCRs that specifically recognize the MART-1 epitope. In turn, DoubletSeeker can act as an antigen discovery platform that allows for the development of novel immunotherapy targets, making it valuable for investigating fundamental tumor immunology.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Humanos , Ligantes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos , Complexo Principal de Histocompatibilidade
18.
Gut Microbes ; 16(1): 2359691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825856

RESUMO

The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/imunologia , Escherichia coli Extraintestinal Patogênica/genética , Animais
19.
J Hepatol ; 59(4): 897-903, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23714157

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver malignancy, representing the third and fifth leading cause of death from cancer worldwide in men and women, respectively. The main risk factor for the development of HCC is the hepatitis B and C virus (HBV and HCV) infection; non-viral causes (e.g., alcoholism and aflatoxin) are additional risk factors. HCC prognosis is generally poor because of the low effectiveness of available treatments and the overall 5-year survival rate is approximately 5-6%. In this framework, immunotherapeutic interventions, including cancer vaccines, may represent a novel and effective therapeutic tool. However, only few immunotherapy trials for HCC have been conducted so far with contrasting results, suggesting that improvements in several aspects of the immunotherapy approaches need to be implemented. In particular, identification of novel specific tumor antigens and evaluation of most advanced combinatorial strategies could result in unprecedented clinical outcomes with great beneficial effect for HCC patients. The state of the art in immunotherapy strategies for HCC and future perspectives are reported in the present review.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Hepatocelular/imunologia , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Masculino , Terapia de Alvo Molecular , Microambiente Tumoral/imunologia , Vacinação/métodos , Vacinação/tendências
20.
Vaccines (Basel) ; 11(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896980

RESUMO

African swine fever (ASF) is a lethal disease in pigs that has grave socio-economic implications worldwide. For the development of vaccines against the African swine fever virus (ASFV), immunogenic antigens that generate protective immune responses need to be identified. There are over 150 viral proteins-many of which are uncharacterized-and humoral immunity to ASFV has not been closely examined. To profile antigen-specific antibody responses, we developed luciferase-linked antibody capture assays (LACAs) for a panel of ASFV capsid proteins and screened sera from inbred and outbred animals that were previously immunized with low-virulent ASFV before challenge with virulent ASFV. Antibodies to B646L/p72, D117L/p17, M1249L, and E120R/p14.5 were detected in this study; however, we were unable to detect B438L-specific antibodies. Anti-B646L/p72 and B602L antibodies were associated with recovery from disease after challenges with genotype I OUR T88/1 but not genotype II Georgia 2007/1. Antibody responses against M1249L and E120R/p14.5 were observed in animals with reduced clinical signs and viremia. Here, we present LACAs as a tool for the targeted profiling of antigen-specific antibody responses to inform vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA