Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurobiol Dis ; 174: 105880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191742

RESUMO

The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Placa Amiloide/genética , Placa Amiloide/patologia , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
2.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008932

RESUMO

Amyloid beta peptides (Aßs) are generated from amyloid precursor protein (APP) through multiple cleavage steps mediated by γ-secretase, including endoproteolysis and carboxypeptidase-like trimming. The generation of neurotoxic Aß42/43 species is enhanced by familial Alzheimer's disease (FAD) mutations within the catalytic subunit of γ-secretase, presenilin 1 (PS1). FAD mutations of PS1 cause partial loss-of-function and decrease the cleavage activity. Activating mutations, which have the opposite effect of FAD mutations, are important for studying Aß production. Aph1 is a regulatory subunit of γ-secretase; it is presumed to function as a scaffold of the complex. In this study, we identified Aph1 mutations that are active in the absence of nicastrin (NCT) using a yeast γ-secretase assay. We analyzed these Aph1 mutations in the presence of NCT; we found that the L30F/T164A mutation is activating. When introduced in mouse embryonic fibroblasts, the mutation enhanced cleavage. The Aph1 mutants produced more short and long Aßs than did the wild-type Aph1, without an apparent modulatory function. The mutants did not change the amount of γ-secretase complex, suggesting that L30F/T164A enhances catalytic activity. Our results provide insights into the regulatory function of Aph1 in γ-secretase activity.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endopeptidases/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mutação , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Domínio Catalítico , Endopeptidases/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Presenilina-1/metabolismo , Proteólise , Saccharomyces cerevisiae
3.
J Cell Biochem ; 122(1): 69-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830360

RESUMO

The four-subunit protease complex γ-secretase cleaves many single-pass transmembrane (TM) substrates, including Notch and ß-amyloid precursor protein to generate amyloid-ß (Aß), central to Alzheimer's disease. Two of the subunits anterior pharynx-defective 1 (APH-1) and presenilin (PS) exist in two homologous forms APH1-A and APH1-B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aß production and γ-secretase medicine. Here, we developed the first complete structural model of the APH-1B subunit using the published cryo-electron microscopy (cryo-EM) structures of APH1-A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all-atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH-1B alone and in γ-secretase without and with substrate C83-bound. We show that APH-1B adopts a 7TM topology with a water channel topology similar to APH-1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo-EM structures with APH-1A, however with subtle differences: The substrate-bound APH-1B γ-secretase was quite stable, but some TM helices of PS1 and APH-1B rearranged in the membrane consistent with the disorder seen in the cryo-EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aß production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH-1B, that is, it represents a more closed state, due to interactions with the C-terminal fragment of PS1. Our structural-dynamic model of APH-1B alone and in γ-secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Endopeptidases/genética , Humanos , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Homologia de Sequência
4.
Cell Biol Int ; 44(2): 412-423, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31538680

RESUMO

Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early-stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+ , the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9-1-1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9-1-1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9-1-1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ciclo Celular , Proliferação de Células , Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Transporte de Elétrons , Endopeptidases/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
5.
RNA Biol ; 16(3): 282-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30663934

RESUMO

Long-term memory formation requires gene expression and new protein synthesis. MicroRNAs (miRNAs), a family of small non-coding RNAs that inhibit target gene mRNA expression, are involved in new memory formation. In this study, elevated miR-151-5p (miR-151) levels were found to be responsible for hippocampal contextual fear memory formation. Using a luciferase reporter assay, we demonstrated that miR-151 targets APH1a, a protein that has been identified as a key factor in γ-secretase activity, namely APH1a. Blocking miR-151 can upregulate APH1a protein levels and subsequently impair hippocampal fear memory formation. These results indicate that miR-151 is involved in hippocampal contextual fear memory by inhibiting APH1a protein expression. This work provides novel evidence for the role of miRNAs in memory formation and demonstrates the implication of APH1a protein in miRNA processing in the adult brain.


Assuntos
Endopeptidases/genética , Medo , Regulação da Expressão Gênica , Memória , MicroRNAs/genética , Interferência de RNA , Animais , Ansiedade/genética , Comportamento Animal , Condicionamento Psicológico , Hipocampo/metabolismo , Proteínas de Membrana , Camundongos
6.
J Neurochem ; 136(6): 1246-1258, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26717550

RESUMO

The γ-secretase complex is composed of at least four components: presenilin 1 or presenilin-2, nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2. In this study, using knockout cell lines, our data demonstrated that knockout of NCT, as well as knockout of presenilin enhancer 2, completely blocked γ-secretase-catalyzed processing of C-terminal fragment (CTF)α and CTFß, the C-terminal fragments of ß-amyloid precursor protein (APP) produced by α-secretase and ß-secretase cleavages, respectively. Interestingly, in Aph-1-knockout cells, CTFα and CTFß were still processed by γ-secretase, indicating Aph-1 is dispensable for APP processing. Furthermore, our results indicate that Aph-1 as well as NCT is not absolutely required for Notch processing, suggesting that NCT is differentially required for APP and Notch processing. In addition, our data revealed that components of the γ-secretase complex are also important for proteasome- and lysosome-dependent degradation of APP and that endogenous APP is mostly degraded by lysosome while exogenous APP is mainly degraded by proteasome. There are unanswered questions regarding the roles of each component of the γ-secretase complex in amyloid precursor protein (APP) and Notch processing. The most relevant, novel finding of this study is that nicastrin (NCT) is required for APP but not Notch processing, while Aph-1 is not essential for processing of both APP and Notch, suggesting NCT as a therapeutic target to restrict Aß formation without impairing Notch signaling.

7.
Mov Disord ; 30(7): 936-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808939

RESUMO

BACKGROUND: Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aß), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aß42 levels in Parkinson's disease (PD). METHODS: Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. RESULTS: Significant correlation with CSF Aß42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aß42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). CONCLUSIONS: In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aß42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aß42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Doença de Parkinson/genética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/líquido cefalorraquidiano , Polimorfismo de Nucleotídeo Único
8.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717968

RESUMO

The final step in Notch signaling activation is the transmembrane cleavage of Notch receptor by γ secretase. Thus far, genetic and biochemical evidence indicates that four subunits are essential for γ secretase activity in vivo: presenilin (the catalytic core), APH-1, PEN-2, and APH-2/nicastrin. Although some γ secretase activity has been detected in APH-2/nicastrin-deficient mammalian cell lines, the lack of biological relevance for this activity has left the quaternary γ secretase model unchallenged. Here, we provide the first example of in vivo Notch signal transduction without APH-2/nicastrin. The surprising dispensability of APH-2/nicastrin is observed in Caenorhabditis elegans germline stem cells (GSCs) and contrasts with its essential role in previously described C. elegans Notch signaling events. Depletion of GLP-1/Notch, presenilin, APH-1, or PEN-2 causes a striking loss of GSCs. In contrast, aph-2/nicastrin mutants maintain GSCs and exhibit robust and localized expression of the downstream Notch target sygl-1. Interestingly, APH-2/nicastrin is normally expressed in GSCs and becomes essential under conditions of compromised Notch function. Further insight is provided by reconstituting the C. elegans γ secretase complex in yeast, where we find that APH-2/nicastrin increases but is not essential for γ secretase activity. Together, our results are most consistent with a revised model of γ secretase in which the APH-2/nicastrin subunit has a modulatory, rather than obligatory role. We propose that a trimeric presenilin-APH-1-PEN-2 γ secretase complex can provide a low level of γ secretase activity, and that cellular context determines whether or not APH-2/nicastrin is essential for effective Notch signal transduction.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Receptores Notch , Transdução de Sinais , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética
9.
J Mol Biol ; 435(21): 168282, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730083

RESUMO

Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA_SpoT activities. In this study, we characterized the MuF-RelA_SpoT toxin associated with the temperate phage of Streptococcus pneumoniae SPNA45. We show that the RelA_SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further determine that the two genes located downstream encode two immunity proteins, one binding to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp synthetases that distinguishes them from (p)ppGpp synthetases.


Assuntos
Ligases , Fagos de Streptococcus , Toxinas Biológicas , Ligases/química , Ligases/metabolismo , Alinhamento de Sequência , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Streptococcus pneumoniae/virologia , Fagos de Streptococcus/enzimologia , Escherichia coli , Domínios Proteicos , Nucleotídeos de Adenina/biossíntese
10.
Cell Rep ; 40(3): 111110, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858570

RESUMO

Emerging evidence suggests that G protein-coupled receptor (GPCR) kinases (GRKs) are associated with the pathophysiology of Alzheimer's disease (AD). However, GRKs have not been directly implicated in regulation of the amyloid-ß (Aß) pathogenic cascade in AD. Here, we determine that GRKs phosphorylate a non-canonical substrate, anterior pharynx-defective 1A (APH1A), an integral component of the γ-secretase complex. Significantly, we show that GRKs generate distinct phosphorylation barcodes in intracellular loop 2 (ICL2) and the C terminus of APH1A, which differentially regulate recruitment of the scaffolding protein ß-arrestin 2 (ßarr2) to APH1A and γ-secretase-mediated Aß generation. Further molecular dynamics simulation studies reveal an interaction between the ßarr2 finger loop domain and ICL2 and ICL3 of APH1A, similar to a GPCR-ß-arrestin complex, which regulates γ-secretase activity. Collectively, these studies provide insight into the molecular and structural determinants of the APH1A-ßarr2 interaction that critically regulate Aß generation.


Assuntos
Doença de Alzheimer , Endopeptidases/metabolismo , Quinases de Receptores Acoplados a Proteína G , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Fosforilação/fisiologia , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
11.
J Adv Res ; 35: 231-243, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35024199

RESUMO

Introduction: Honokiol (HO) exerts neuroprotective effects in several animal models of Alzheimer's disease (AD), but the poor dissolution hampers its bioavailability and therapeutic efficacy. Objectives: A novel honokiol nanoscale drug delivery system (Nano-HO) with smaller size and excellent stability was developed in this study to improve the solubility and bioavailability of HO. The anti-AD effects of Nano-HO was determined. Methods: Male TgCRND8 mice were daily orally administered Nano-HO or HO at the same dosage (20 mg/kg) for 17 consecutive weeks, followed by assessment of the spatial learning and memory functions using the Morris Water Maze test (MWMT). Results: Our pharmacokinetic study indicated that the oral bioavailability was greatly improved by Nano-HO. In addition, Nano-HO significantly improved cognitive deficits and inhibited neuroinflammation via suppressing the levels of TNF-α, IL-6 and IL-1ß in the brain, preventing the activation of microglia (IBA-1) and astrocyte (GFAP), and reducing ß-amyloid (Aß) deposition in the cortex and hippocampus of TgCRND8 mice. Moreover, Nano-HO was more effective than HO in modulating amyloid precursor protein (APP) processing via suppressing ß-secretase, as well as enhancing Aß-degrading enzymes like neprilysin (NEP). Furthermore, Nano-HO more markedly inhibited tau hyperphosphorylation via decreasing the ratio of p-Tau (Thr 205)/tau and regulating tau-related apoptosis proteins (caspase-3 and Bcl-2). In addition, Nano-HO more markedly attenuated the ratios of p-JNK/JNK and p-35/CDK5, while enhancing the ratio of p-GSK-3ß (Ser9)/GSK-3ß. Finally, Nano-HO prevented the gut microflora dysbiosis in TgCRND8 mice in a more potent manner than free HO. Conclusion: Nano-HO was more potent than free HO in improving cognitive impairments in TgCRND8 mice via inhibiting Aß deposition, tau hyperphosphorylation and neuroinflammation through suppressing the activation of JNK/CDK5/GSK-3ß signaling pathway. Nano-HO also more potently modulated the gut microbiota community to protect its stability than free HO. These results suggest that Nano-HO has good potential for further development into therapeutic agent for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Doença de Alzheimer/tratamento farmacológico , Animais , Compostos de Bifenilo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Lignanas , Masculino , Camundongos , Doenças Neuroinflamatórias
12.
Cancer Manag Res ; 11: 9541-9552, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814758

RESUMO

PURPOSE: To determine whether early proteins from high-risk human papillomavirus (HPV) have the capacity to maintain cellular stemness. PATIENTS AND METHODS: First, we isolated cancer stem cell like cells from two cervical cancer cell lines, SiHa and CaSki, using non-adhesive culture with serum-free medium. Second, we knocked down HPV16 E7 in SiHa sphere cells and overexpressed HPV16 E7 in U2OS sphere cells. Third, we used RNA-seq analysis and Western blotting to screen and identify the expression of differentially expressed genes in SiHa cells with HPV16 E7 knockdown. RESULTS: We found that both SiHa and CaSki cells grew as cell spheres (oncospheres) and shared the properties of cancer stem cells, including high expression of stem cell marker OCT4 and SOX2, self-renew, and resistance to chemotherapeutic drugs. The stem-like properties were deprived when HPV16 E7 was knocked down in SiHa sphere cells and maintained when HPV16 E7 was over-expressed in U2OS sphere cells. APH1B was up-regulated, among differential expression genes, in SiHa cells with HPV16 E7 knockdown and modulated cellular stemness and SiHa sphere cells with APH1B knockdown regained the stem-like properties deprived by E7 inhibition. CONCLUSION: HPV16 E7 possesses the capacity to maintain cellular stemness and APH1B may participate in this process in cervical cancer sphere cells.

13.
ACS Chem Neurosci ; 10(6): 2931-2938, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30979338

RESUMO

Anterior pharynx-defective 1A (APH-1A) is a seven transmembrane component of γ-secretase (GS), an aspartyl protease enzyme involved in the production of toxic amyloid-ß peptides in Alzheimer's disease patients. Cryo-electron microscopy structures of the enzyme complex revealed a central cavity in its APH-1A component, similar to water-containing cavities in G-protein coupled receptors (GPCRs). In this work, we performed molecular dynamics and umbrella sampling simulations to understand the role of the APH-1A cavity in the GS complex. Our results suggest that APH-1A is able to store water molecules in its inner cavity and transport some of them between cell spaces. Additionally, APH-1A allows the influx of extracellular cations into a central hydrophilic cavity but cannot transport them into the intracellular space. Overall, this study seeks to describe an alternative APH-1A function in GS besides its complex stabilization role and provide novel approaches to understand the functioning of the GS enzyme.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Endopeptidases/química , Proteínas de Membrana/química , Humanos , Simulação de Dinâmica Molecular , Água
14.
EMBO Mol Med ; 9(8): 1088-1099, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28588032

RESUMO

γ-Secretases are a family of intramembrane cleaving aspartyl proteases and important drug targets in Alzheimer's disease. Here, we generated mice deficient for all γ-secretases in the pyramidal neurons of the postnatal forebrain by deleting the three anterior pharynx defective 1 (Aph1) subunits (Aph1abc cKO Cre+). The mice show progressive cortical atrophy, neuronal loss, and gliosis. Interestingly, this is associated with more than 10-fold accumulation of membrane-bound fragments of App, Aplp1, Nrg1, and Dcc, while other known substrates of γ-secretase such as Aplp2, Lrp1, and Sdc3 accumulate to lesser extents. Despite numerous reports linking neurodegeneration to accumulation of membrane-bound App fragments, deletion of App expression in the combined Aph1 knockout does not rescue this phenotype. Importantly, knockout of only Aph1a- or Aph1bc-secretases causes limited and differential accumulation of substrates. This was not associated with neurodegeneration. Further development of selective Aph1-γ-secretase inhibitors should be considered for treatment of Alzheimer's disease.


Assuntos
Endopeptidases/deficiência , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Prosencéfalo/enzimologia , Prosencéfalo/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Histocitoquímica , Imuno-Histoquímica , Proteínas de Membrana , Camundongos , Camundongos Knockout , Microscopia de Fluorescência
15.
J Alzheimers Dis ; 56(4): 1263-1269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234257

RESUMO

Presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer-2 (Pen-2) have been considered the minimal essential subunits required to form an active γ-secretase complex. Besides PS, which has been widely believed to function as the catalytic subunit of the complex, the functional roles of the other subunits in the γ-secretase complex remain debatable. In the current study, we set out to determine the role of Pen-2 in γ-secretase activity. To this end, using knockout cells in combination with siRNA and immunoprecipitation approaches, our results revealed that Pen-2 together with presenilin are sufficient to form a functionally active enzyme to process Notch. Specifically, our data demonstrated that Pen-2 plays a crucial role in substrate binding, a mechanism by which Pen-2 contributes directly to the catalytic mechanism of γ-secretase activity. Our data also suggested that there may be different requirements for components to process AßPP and Notch. This information would be important for therapeutic strategy aimed at inhibition or modulation of γ-secretase activity.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Catálise , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Camundongos Knockout , Presenilina-1/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Receptores Notch/genética
16.
J Alzheimers Dis ; 40(1): 161-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24413617

RESUMO

γ-Secretase is involved in the regulated intramembrane proteolysis of amyloid-ß protein precursor (AßPP) and of many other important physiological substrates. γ-secretase is a multiproteic complex made of four main core components, namely presenilin 1 or 2, APH-1, PEN-2, and Nicastrin. Since APH-1 exists as different variants, combinations of these proteins can theoretically yield distinct γ-secretase complexes. Whether γ-secretase complexes trafficking and targeting to either similar or distinct subcellular compartments depend upon their molecular composition remains unknown. A differential complex-specific distribution may drive a narrow specificity for a subset of substrates that would traffic within the same cellular compartments. Here, we generated bigenic expression vectors to co-express untagged nicastrin or presenilin 1 together with either PEN-2 or distinct variants of APH-1 (aL, aS and b) tagged with complementary fragments of the fluorescent protein Venus. We show that these constructs allow the formation of functional γ-secretase complexes and their visualization with bimolecular fluorescence complementation (BiFC). BiFC can be detected at the plasma membrane as well as in endosomes/lysosomes in addition to the endoplasmic reticulum (ER) of COS-7 cells transfected with the different variants of APH-1. However, the majority of cells co-transfected with APH-1b presented BiFC signal only in the ER, suggesting enhanced retention/retrieval of APH-1b-containing γ-secretase complexes. Therefore, the new tools described here should be helpful to decipher the precise subcellular trafficking of γ-secretase complexes and to delineate the distinct variant-linked pathways in various cellular systems.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/metabolismo , Fluorescência , Subunidades Proteicas/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Modelos Moleculares , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Subunidades Proteicas/genética , Transfecção
17.
Elife ; 32014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24891237

RESUMO

Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Hipocampo/embriologia , Neuregulina-1/metabolismo , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Deleção de Genes , Hipocampo/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Técnicas de Patch-Clamp , Esquizofrenia/metabolismo , Transdução de Sinais , Sinapses/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-22918033

RESUMO

With roughly 234 million people undergoing surgery with anesthesia each year worldwide, it is important to determine whether commonly used anesthetics can induce any neurotoxicity. Alzheimer's disease (AD) is the most common form of age-related dementia, and a rapidly growing health problem. Several studies suggest that anesthesia could be associated with the development of AD. Moreover, studies in cultured cells and animals show that commonly used inhalation anesthetics may induce changes consistent with AD neuropathogenesis, e.g., ß-amyloid protein accumulation. Therefore, in this mini review, we focus on the recent research investigating the effects of commonly used anesthetics including isoflurane, sevoflurane, desflurane, nitrous oxide, and propofol, on Aß accumulation in vitro and in vivo. We further discuss the future direction of the research determining the effects of anesthetics on ß-amyloid protein accumulation.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anestésicos Gerais/efeitos adversos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA