Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biochem Biophys Res Commun ; 696: 149534, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241810

RESUMO

Autotransporters constitute a large family of natural proteins that are essential for delivering many types of proteins and peptides across the outer membrane in Gram-negative bacteria. In biotechnology, autotransporters have been explored for display of recombinant proteins and peptides on the surface of Escherichia coli and have potential as tools for directed evolution of affinity proteins. Here, we investigate conditions for AIDA-I autotransporter-mediated display of recombinant proteins. A new expression vector was designed and engineered for this purpose, and a panel of proteins from different affinity-protein classes were subcloned to the vector, followed by evaluation of expression, surface display and functionality. Surface expression was explored in ten different E. coli strains together with assessment of transformation efficiencies. Furthermore, the most promising strain and expression vector combination was used in mock library selections for evaluation of magnetic-assisted cell sortings (MACS). The results demonstrated dramatically different performances depending on the type of affinity protein and choice of E. coli strain. The optimized MACS protocol showed efficient enrichment, and thus potential for the new AIDA-I display system to be used in methods for directed evolution of affinity proteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Adesinas de Escherichia coli/química , Sistemas de Secreção Tipo V/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Peptídeos/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008883

RESUMO

A regenerable immunoaffinity layer comprising covalently immobilized orientation-controlled antibodies was developed for use in a surface plasmon resonance (SPR) biosensor. For antibody orientation control, antibody-binding Z-domain-autodisplaying Escherichia coli (E. coli) cells and their outer membrane (OM) were utilized, and a disuccinimidyl crosslinker was employed for covalent antibody binding. To fabricate the regenerable immunoaffinity layer, capture antibodies were bound to autodisplayed Z-domains, and then treated with the crosslinker for chemical fixation to the Z-domains. Various crosslinkers, namely disuccinimidyl glutarate (DSG), disuccinimidyl suberate (DSS) and poly (ethylene glycol)-ylated bis (sulfosuccinimidyl)suberate (BS(PEG)5), were evaluated, and DSS at a concentration of 500 µM was confirmed to be optimal. The E. coli-cell-based regenerable HRP immunoassay was evaluated employing three sequential HRP treatment and regeneration steps. Then, the Oms of E. coli cells were isolated and layered on a microplate and regenerable OM-based HRP immunoassaying was evaluated. Five HRP immunoassays with four regeneration steps were found to be feasible. This regenerable, covalently immobilized, orientation-controlled OM-based immunoaffinity layer was applied to an SPR biosensor, which was capable of quantifying C-reactive protein (CRP). Five regeneration cycles were repeated using the demonstrated immunoaffinity layer with a signal difference of <10%.


Assuntos
Anticorpos Antibacterianos/metabolismo , Anticorpos Imobilizados/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Imunoensaio/métodos , Membrana Celular/metabolismo
3.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439988

RESUMO

The Escherichia coli virulence factor hemoglobin protease (Hbp) has been engineered into a surface display system that can be expressed to high density on live E. coli and Salmonella enterica serovar Typhimurium cells or derived outer membrane vesicles (OMVs). Multiple antigenic sequences can be genetically fused into the Hbp core structure for optimal exposure to the immune system. Although the Hbp display platform is relatively tolerant, increasing the number, size, and complexity of integrated sequences generally lowers the expression of the fused constructs and limits the density of display. This is due to the intricate mechanism of Hbp secretion across the outer membrane and the efficient quality control of translocation-incompetent chimeric Hbp molecules in the periplasm. To address this shortcoming, we explored the coupling of purified proteins to the Hbp carrier after its translocation across the outer membrane using the recently developed SpyTag/SpyCatcher protein ligation system. As expected, fusion of the small SpyTag to Hbp did not hamper display on OMVs. Subsequent addition of purified proteins fused to the SpyCatcher domain resulted in efficient covalent coupling to Hbp-SpyTag. Using in addition the orthogonal SnoopTag/SnoopCatcher system, multiple antigen modules could be coupled to Hbp in a sequential ligation strategy. Not only antigens proved suitable for Spy-mediated ligation but also nanobodies. Addition of this functionality to the platform might allow the targeting of live bacterial or OMV vaccines to certain tissues or immune cells to tailor immune responses.IMPORTANCE Outer membrane vesicles (OMVs) derived from Gram-negative bacteria attract increasing interest in the development of vaccines and therapeutic agents. We aim to construct a semisynthetic OMV platform for recombinant antigen presentation on OMVs derived from attenuated Salmonella enterica serovar Typhimurium cells displaying an adapted Escherichia coli autotransporter, Hbp, at the surface. Although this autotransporter accepts substantial modifications, its capacity with respect to the number, size, and structural complexity of the antigens genetically fused to the Hbp carrier is restricted. Here we describe the application of SpyCatcher/SpyTag protein ligation technology to enzymatically link antigens to Hbp present at high density in OMVs. Protein ligation was apparently unobstructed by the membrane environment and allowed a high surface density of coupled antigens, a property we have shown to be important for vaccine efficacy. The OMV coupling procedure appears versatile and robust, allowing fast production of experimental vaccines and therapeutic agents through a modular plug-and-display procedure.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Proteínas Recombinantes/metabolismo
4.
Appl Microbiol Biotechnol ; 102(11): 4829-4841, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29675801

RESUMO

This article comparatively reports the workability of Escherichia coli BL21(DE3) and Pseudomonas putida KT2440 cell factories for the expression of three model autodisplayed cellulases (i.e., endoglucanase, BsCel5A; exoglucanase, CelK; ß-glucosidase, BglA). The differentiation of the recombinant cells was restricted to their cell growth and enzyme expression/activity attributes. Comparatively, the recombinant E. coli showed higher cell growth rates but lower enzyme activities than the recombinant P. putida. However, the endo-, exoglucanase, and ß-glucosidase on the surfaces of both cell factories showed activity over a broad range of pH (4-10) and temperature (30-100 °C). The pH and temperature optima were pH 6, 60 °C (BsCel5A); pH 6, 60-70 °C (CelK); and pH 6, 50 °C (BglA). Overall, the P. putida cell factory with autodisplayed enzymes demonstrated higher bioactivity and remarkable biochemical characteristics and thus was chosen for the saccharification of filter paper. A volumetric blend of the three cellulases with P. putida as the host yielded a ratio of 1:1:1.5 of endoglucanase, exoglucanase, and ß-glucosidase, respectively, as the optimum blend composition for filter paper degradation. At an optical density (578 nm) of 50, the blend generated a maximum sugar yield of about 0.7 mg/ml (~ 0.08 U/g) from Whatman filter paper (Ø 6 mm, ~ 2.5 mg) within 24 h.


Assuntos
Celulases/genética , Escherichia coli/genética , Pseudomonas putida/genética , Celulases/biossíntese , Microbiologia Industrial , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
Biotechnol Lett ; 40(3): 591-600, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29357100

RESUMO

OBJECTIVES: To display a recombinant avidin fused to the autotransporter ShdA to bind biotinylated molecules on the surface of Escherichia coli. RESULTS: Two chimeric protein constructs containing avidin fused to the autotransporter ShdA were expressed on the surface of Escherichia coli DH5α. One fusion protein contained 476 amino acids of the ShdA α and ß domains, whereas the second consisted of a 314 amino acid from α and truncated ß domains. Protein production was verified by SDS-PAGE using an antibody to the molecular FLAG-tag. The surface display of the avidin-shdA fusion protein was confirmed by confocal microscopy and flow cytometry analysis, and the biotin-binding activity was evaluated by fluorescence microscopy and flow cytometry using biotin-4-fluorescein and biotinylated-ovalbumin (OVA). CONCLUSIONS: Expression of a recombinant avidin with biotin-binding activity on the surface of E. coli was achieved using the autotransporter ShdA. This system is an alternative to bind biotinylated molecules to E. coli.


Assuntos
Avidina/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Avidina/química , Avidina/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Biotina/análogos & derivados , Biotina/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/citologia , Escherichia coli/genética , Fluoresceínas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
6.
Sensors (Basel) ; 18(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463208

RESUMO

Through orientation control of antibodies, Z-domains autodisplaying Escherichia coli outer cell membrane (OM) may be utilized to improve the sensitivity and limit of detection (LOD) of immunoassays and immunosensors. A regenerative immunoaffinity layer based on Z-domains autodisplaying E. coli OM was developed for the surface plasmon resonance (SPR) biosensor. Regeneration conditions for the Z-domains autodisplaying E. coli OM-based immunoassays and immunosensors were optimized by varying pH and detergent concentration. An E. coli cell-based HRP immunoassay was tested and validated in three sequential regenerative immunoassays under optimal conditions. The OM of Z-domains autodisplaying E. coli was isolated and coated on the two-dimensional substrate (microplate). The OM-based HRP immunoassay was tested and validated in four regenerative immunoassays. This regenerative OM layer was applied to the SPR biosensor. Z-domains autodisplaying OM layered onto the gold surface of SPR biosensors was developed, and the OM-based regenerative immunoaffinity layer with orientation control was tested using CRP analyte. The SPR biosensor regenerative immunoaffinity layer demonstrated that CRP biosensing was repeated for five regeneration cycles with less than 2% signal difference. Therefore, the newly developed regenerative immunoaffinity layer with antibody orientation control may improve biosensing sensitivity and reduce the cost of medical diagnosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Escherichia coli/metabolismo , Imunoensaio , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Técnicas Biossensoriais , Parede Celular/metabolismo , Ouro/química , Peroxidase do Rábano Silvestre/metabolismo , Domínios Proteicos , Ressonância de Plasmônio de Superfície
7.
Biochim Biophys Acta ; 1860(6): 1043-55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26774645

RESUMO

BACKGROUND: Small molecules targeting the dimerization interface of the C-terminal domain of Hsp90, a validated target for cancer treatment, have yet to be identified. METHODS: Three peptides were designed with the aim to inhibit the dimerization of Hsp90. Computational and biophysical methods examined the α-helical structure for the three peptides. Based on the Autodisplay technology, a novel flow cytometer dimerization assay was developed to test inhibition of Hsp90 dimerization. Microscale thermophoresis was used to determine the K(D) of the peptides towards the C-terminal domain of Hsp90. RESULTS: MD simulations and CD spectroscopy indicated an α-helical structure for two of the three peptides. By flow cytometer analysis, IC(50) values of 2.08 µM for peptide H2 and 8.96 µM for peptide H3 were determined. Dimer formation of the C-terminal dimerization domain was analyzed by microscale thermophoresis, and a K(D) of 1.29 nM was determined. Furthermore, microscale thermophoresis studies demonstrated a high affinity binding of H2 and H3 to the C-terminal domain, with a K(D) of 1.02 µM and 1.46 µM, respectively. CONCLUSIONS: These results revealed the first peptidic inhibitors of Hsp90 dimerization targeting the C-terminal domain. Furthermore, it has been shown that these peptides bind to the C-terminal domain with a low micromolar affinity. GENERAL SIGNIFICANCE: These results can be used to design and screen for small molecules that inhibit the dimerization of the C-terminal domain of Hsp90, which could open a new route for cancer therapy.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Multimerização Proteica , Sequência de Aminoácidos , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína
8.
Biochim Biophys Acta Biomembr ; 1859(1): 104-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27814979

RESUMO

Anchorage of recombinant proteins onto the outer membrane of gram-negative bacteria is an attractive solution for protein library screening and whole cell biocatalysis if a membrane environment is required or mass transfer into the cell is limiting. Autotransporters have been successfully applied for surface display of various heterologous proteins. Still, many underlying parameters for achieving active enzymes are not known. Here, we systematically tested different linkers between passenger and the membrane embedded ß-barrel of the autotransporter. The linker can have influence on aspects such as steric orientation of the passenger, distance to the outer membrane and accessibility of active sites. Six linker variants for display of the cytochrome P450 reductase were tested. Cytochrome c reduction by the cytochrome P450 reductase varied fivefold and was highest by introduction of a flexible glycine-serine region. When these variants were co-expressed with surface displayed CYP1A2, product concentration for paracetamol differed between 0.22 µM and 2.5 µM and for resorufin between 0.23 µM to 1 µM. The best glycine/serine containing sequence, that turned out to be best for CPR display, was then introduced into the linker for displaying CYP1A2. In comparison, up to 7.9 µM paracetamol and up to 1.69 µM resorufin were obtained with this new variant. The differences were not caused by changes in the number of displayed enzymes. To our knowledge, this is the first systematic study on engineering the linker for surface display of recombinant enzymes.


Assuntos
Acetaminofen/química , Membrana Celular/química , Citocromo P-450 CYP1A2/química , Escherichia coli/genética , Oxazinas/química , Acetaminofen/metabolismo , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Membrana Celular/genética , Membrana Celular/metabolismo , Clonagem Molecular , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Genética , Cinética , Modelos Moleculares , Oxazinas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
9.
Biotechnol Bioeng ; 114(8): 1658-1669, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28401536

RESUMO

Inherent cofactor regeneration is a pivotal feature of whole cell biocatalysis. For specific biotechnological applications, surface display of enzymes is emerging as a tool to circumvent mass transfer limitations or enzyme stability problems. Even complex reactions can be accomplished applying displayed enzymes. Yet, industrial utilization of the technique is still impeded by lacking cofactor regeneration at the cell surface. Here, we report on the surface display of a glucose-6-phoshate dehydrogenase (G6PDH) via Autodisplay to address this limitation and regenerate NADPH directly at the cell surface. The obtained whole cell biocatalyst demonstrated similar kinetic parameters compared to the purified enzyme, more precisely KM values of 0.2 mM for NADP+ and calculated total turnover numbers of 107 . However, the KM for the substrate G6P increased by a factor of 7 to yield 1.5 mM. The whole cell biocatalyst was cheaper to produce, easy to separate from the reaction mixture and reusable in consecutive reaction cycles. Furthermore, lyophilization allowed storage at room temperature. The whole cell biocatalyst displaying G6PDH was applicable for NADPH regeneration in combination with soluble as well as surface displayed enzymes and model reactions in combination with bacterial CYP102A1 and human CYP1A2 were realized. Biotechnol. Bioeng. 2017;114: 1658-1669. © 2017 Wiley Periodicals, Inc.


Assuntos
Membrana Celular/metabolismo , Coenzimas/metabolismo , Escherichia coli/fisiologia , Glucosefosfato Desidrogenase/metabolismo , NADP/metabolismo , Engenharia de Proteínas/métodos , Membrana Celular/genética , Coenzimas/genética , Regulação Enzimológica da Expressão Gênica/genética , Glucosefosfato Desidrogenase/genética , NADP/genética , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Biochim Biophys Acta ; 1848(12): 3126-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407724

RESUMO

In this work, two proteins, Z-domains and bovine casein, were auto-displayed on the outer membrane of the same Escherichia coli cells by co-transformation of two different auto-display vectors. On the basis of SDS-PAGE densitometry, Z-domains and bovine casein were expressed at 3.12 × 105 and 1.55 × 105 proteins/E. coli cell, respectively. The co-auto-displayed Z-domains had antibody-binding activity and the bovine casein had adhesive properties. E. coli with co-auto-displayed proteins were analyzed by fluorescence assisted cell sorting (FACS). E. coli with co-auto-displayed Z-domains and bovine casein aggregated due to hydrophobic interaction. For application to immunoassays, the Z-domain activity was estimated after (1) immobilizing the E. coli and (2) forming an OM layer. E. coli with co-auto-displayed two proteins that were immobilized on a polystyrene microplate had the same antibody-binding activity as did E. coli with auto-displayed Z-domains only. The OM layer from the co-transformed E. coli had Z-domains and bovine casein expressed at a 1:2 ratio from antibody-binding activity measurements.


Assuntos
Caseínas/genética , Escherichia coli/genética , Animais , Caseínas/metabolismo , Bovinos , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunoensaio
11.
Biochim Biophys Acta ; 1848(7): 1509-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858110

RESUMO

In this work, adrenodoxin (Adx) was expressed on the outer membrane of E. coli by autodisplay and then the iron-sulfur cluster was incorporated into apo-Adx by an anaerobic reconstitution process. For the determination of the redox potentials of the iron-sulfur clusters of the autodisplayed Adx, E. coli cells with autodisplayed Adx were immobilized on a gold electrode modified with a self-assembled monolayer of mercaptoundecanoic acid (MUA). From the repeated cyclic voltammetry (CV) analysis, the E. coli (10mM HEPES buffer, pH7.0) with autodisplayed Adx showed significant changes in shape with an oxidation peak at +0.4V (vs. Ag/AgCl) and a reduction peak at -0.3V (vs. Ag/AgCl) after the reconstitution process for the incorporation of the iron-sulfur cluster. From the repeated CV analysis in the reduction and oxidation potential ranges, the iron-sulfur clusters of the autodisplayed Adx were observed to undergo reversible redox reactions via direct electron transfer to the MUA-modified gold electrode.


Assuntos
Adrenodoxina/metabolismo , Membrana Celular/metabolismo , Técnicas Eletroquímicas/métodos , Proteínas Recombinantes/metabolismo , Adrenodoxina/química , Adrenodoxina/genética , Animais , Western Blotting , Bovinos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Transporte de Elétrons , Escherichia coli/genética , Ácidos Graxos/química , Ouro/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Oxirredução , Proteínas Recombinantes/química , Compostos de Sulfidrila/química
12.
Biochim Biophys Acta ; 1848(3): 842-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528472

RESUMO

"Autodisplay technology" is an expression technique used to display the various recombinant proteins on the outer membrane (OM) of Escherichia coli. The resulting autodisplayed Z-domain has been used to improve the sensitivity of immunoassays. In this work, a facile isolation method of the OM fraction of E. coli with autodisplayed Z-domains was presented using (1) an enzyme reaction for the hydrolysis of the peptidoglycan layer and (2) short centrifugation steps. The purity of the isolated OM fraction was analyzed. For the estimation of contamination with bacterial proteins from other parts of E. coli, Western blots of marker proteins for the OM (OmpA), periplasm (ß-lactamase), inner membrane (SecA), and cytoplasm (ß-galactosidase) were performed. Additionally, assays of marker components or enzymes from each part of E. coli were carried out including the OM (KDO), inner membrane (NADH oxidase), periplasm (ß-lactamase), and cytoplasm (ß-galactosidase). The yield of OM isolation using this new method was determined to be 80% of the total OM amount, with less than 1% being contaminants from other parts of E. coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Western Blotting , Membrana Celular/química , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Estrutura Terciária de Proteína , beta-Galactosidase/química , beta-Galactosidase/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo
13.
Crit Rev Microbiol ; 41(1): 109-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23855358

RESUMO

Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.


Assuntos
Sistemas de Secreção Bacterianos , Biotecnologia/métodos , Técnicas de Visualização da Superfície Celular/métodos , Bactérias Gram-Negativas , Proteínas da Membrana Bacteriana Externa , Biodegradação Ambiental , Modelos Moleculares , Proteínas Recombinantes , Vacinas Sintéticas
14.
Molecules ; 20(9): 15449-68, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26343612

RESUMO

Hyaluronan (HA) is the main component of the extracellular matrix (ECM). Depending on its chain size, it is generally accepted to exert diverse effects. High molecular weight HA is anti-angiogenic, immunosuppressive and anti-inflammatory, while lower fragments are angiogenic and inflammatory. Human hyaluronidase Hyal-1 (Hyal-1) is one of the main enzymes in the metabolism of HA. This makes Hyal-1 an interesting target. Not only for functional and mechanistic studies, but also for drug development. In this work, Hyal-1 was expressed on the surface of E. coli, by applying Autodisplay, to overcome formation of inactive "inclusion bodies". With the cells displaying Hyal-1 an activity assay was performed using "stains-all" dye. Subsequently, the inhibitory effects of four saponins and 14 plant extracts on the activity of surface displayed Hyal-1 were evaluated. The determined IC50 values were 177 µM for glycyrrhizic acid, 108 µM for gypsophila saponin 2, 371 µM for SA1657 and 296 µM for SA1641. Malvae sylvestris flos, Equiseti herba and Ononidis radix extracts showed IC50 values between 1.4 and 1.7 mg/mL. In summary, Autodisplay enabled the expression of functional human target protein Hyal-1 in E. coli and facilitated an accelerated testing of potential inhibitors.


Assuntos
Antígenos de Neoplasias/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Extratos Vegetais/farmacologia , Antígenos de Neoplasias/genética , Membrana Celular/metabolismo , Inibidores Enzimáticos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glicirrízico/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/genética , Extratos Vegetais/química , Saponinas/farmacologia
15.
Enzyme Microb Technol ; 174: 110391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176324

RESUMO

The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1-10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membrana Celular/metabolismo , Sequência de Aminoácidos
16.
Int J Biol Macromol ; 265(Pt 1): 130854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484814

RESUMO

Monocarboxylate transporter-1 (MCT-1) inhibitors were screened from the Fv-antibody library, which contained complementary determining region 3 with randomized amino acid sequences (11 residues) through site-directed mutagenesis. Fv-antibodies against MCT-1 were screened from the autodisplayed Fv-antibody library. Two clones were screened, and the binding affinity (KD) against MCT-1 was estimated using flow cytometry. The screened Fv-antibodies were expressed as soluble fusion proteins (Fv-1 and Fv-2) and the KD for MCT-1 was estimated using the SPR biosensor. The inhibitory activity of the expressed Fv-antibodies was observed in HEK293T and Jurkat cell lines by measuring intracellular pH and lactate accumulation. The level of cell viability in HEK293T and Jurkat cell lines was decreased by the inhibitory activity of the expressed Fv-antibodies. The binding properties of the Fv-antibodies to MCT-1 were analyzed using molecular docking simulations. Overall, the results showed that the screened Fv-antibodies against MCT-1 from the Fv-antibody library had high binding affinity and inhibitory activity against MCT-1, which could be used as potential therapeutic drug candidates for the MCT-1 inhibitor.


Assuntos
Anticorpos , Proteínas de Transporte , Humanos , Simulação de Acoplamento Molecular , Células HEK293 , Sequência de Aminoácidos , Biblioteca Gênica
17.
J Colloid Interface Sci ; 663: 227-237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401443

RESUMO

Outer membrane vesicle-functionalized nanoparticles (OMV-NPs) have attracted significant interest, especially regarding drug delivery applications and vaccines. Here, we report on novel OMV-NPs by applying bioorthogonal click reaction for encapsulating gold nanoparticles (NPs) within outer membrane vesicles (OMVs) by covalent coupling. For this purpose, outer membrane protein A (OmpA), abundant in large numbers (due to 100,000 copies/cell [1]) in OMVs, was modified via the incorporation of the unnatural amino acid p-azidophenylalanine. The azide group was covalently coupled to alkyne-functionalized NPs after incorporation into OmpA. A simplified procedure using low-speed centrifugation (1,000 x g) was developed for preparing OMV-NPs. The OMV-NPs were characterized by zeta potential, Laurdan-based lipid membrane dynamics studies, and the enzymatic activity of functionalized OMVs with surface-displayed nicotinamide adenine dinucleotide oxidase (Nox). In addition, OMVs from attenuated bacteria (ClearColiTM BL21(DE3), E. coli F470) with surface-displayed Nox or antibody fragments were prepared and successfully coupled to AuNPs. Finally, OMV-NPs displaying single-chain variable fragments from a monoclonal antibody directed against epidermal growth factor receptor were applied to demonstrate the feasibility of OMV-NPs for tumor cell targeting.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
18.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242492

RESUMO

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.

19.
Biosens Bioelectron ; 202: 113976, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042130

RESUMO

One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais , Animais , Arachis , Escherichia coli/genética , Alimentos , Imunoensaio , Biblioteca de Peptídeos , Perciformes , Suínos
20.
Enzyme Microb Technol ; 149: 109834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311879

RESUMO

The goal of this work was the autodisplay of the endo ß-1,4-xylanase (XynA) from Clostridium cellulovorans in Escherichia coli using the AIDA system to carry out whole-cell biocatalysis and hydrolysate xylans. For this, pAIDA-xynA vector containing a synthetic xynA gene was fused to the signal peptide of the toxin subunit B Vibro cholere (ctxB) and the auto-transporter of the synthetic aida gene, which encodes for the connector peptide and ß-barrel of the auto-transporter (AT-AIDA). E. coli TOP10 cells were transformed and the biocatalyst was characterized using beechwood xylans as substrate. Optimal operational conditions were temperature of 55 °C and pH 6.5, and the Michaelis-Menten catalytic constants Vmax and Km were 149 U/gDCW and 6.01 mg/mL, respectively. Xylanase activity was inhibited by Cu2+, Zn2+ and Hg2+ as well as EDTA, detergents, and organic acids, and improved by Ca2+, Co2+ and Mn2+ ions. Ca2+ ion strongly enhanced the xylanolytic activity up to 2.4-fold when 5 mM CaCl2 were added. Also, Ca2+ improved enzyme stability at 60 and 70 °C. Results suggest that pAIDA-xynA vector has the ability to express functional xylanase to perform whole-cell biocatalysis in order to hydrolysate xylans from hemicellulose feedstock.


Assuntos
Clostridium cellulovorans , Xilanos , Clostridium cellulovorans/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA