RESUMO
Immobilized polysaccharide-based columns showed excellent enantioselectivity in normal phase separation mode. In this work, enantioseparation abilities of four immobilized polysaccharide-derived chiral stationary phases (Chiralpak IA, Chiralpak IB, Chiralpak IC, and Chiralpak ID) toward 15 azole compounds were evaluated. Separation was carried out using n-hexane as mobile phase with ethanol, 1-propanol, 1-butanol, and 2-propanol as modifiers. And twelve compounds have achieved baseline separation with the resolutions ranging between 2.05 and 21.73. The enantioseparation on the four polysaccharide-based chiral columns using different alcohol modifiers was compared. In general, the best separation performance was identified as Chiralpak IC, which was able to resolve 11 compounds to baseline and two partially under the screening conditions. Separation on Chiralpak IB was not satisfactory, because only four compounds were baseline separated.
Assuntos
Azóis/isolamento & purificação , Estereoisomerismo , Álcoois , Azóis/química , Cromatografia Líquida de Alta Pressão/métodos , Hexanos , Métodos , PolissacarídeosRESUMO
Trichophyton rubrum is the most frequently isolated dermatophyte species in European countries. The lack or poor sporulation of T. rubrum has always been a major complication and a limiting factor when performing antifungal susceptibility testing. Therefore, we describe an in vitro method aiming to enhance sporulation of various T. rubrum isolates in order to perform antifungigrams. A combination of high CO2 tensions and incubation on PDA growth medium revealed to be optimal for sporulation of all tested T. rubrum isolates. This method was further used to examine in vitro the combined effects of amorolfine and azole derivatives against fungal growth using adapted checkerboard microdilution assays and an isobolographic approach of the data, adapted disc diffusion and Etest assays. Non-antagonistic and synergistic effects were observed in these settings with amorolfine combined to each of the tested azole compounds. The optimised culture method appeared to be suitable for T. rubrum isolates for which antifungigrams were especially difficult to obtain because of the lack of sporulation.
Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Morfolinas/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/isolamento & purificação , Trichophyton/efeitos dos fármacos , Trichophyton/fisiologia , Dióxido de Carbono , Meios de Cultura , Europa (Continente) , Humanos , Testes de Sensibilidade Microbiana , Técnicas Microbiológicas , Trichophyton/crescimento & desenvolvimentoRESUMO
Endocrine-mediated effects in fish populations have been widely documented. Most attention has been focused on feminization caused by estrogenic substances, but this paper reviews evidence for the effects of a group of fungicides and pharmaceuticals, the azoles, which have been reported to cause masculinization in fish. The paper considers information from laboratory studies on the effects of azole compounds on fish endocrinology, and on the potential existence of such effects in wild fish. The occurrence of some azoles in effluents and surface waters has also been briefly reviewed. Under laboratory conditions, many azoles are able to cause masculinization or defeminization in fish by inhibition of the P450 enzyme aromatase (CYP19). However, in no case where such effects have been observed in the field has a link been established with this group of substances. In most instances, other more convincing explanations have been proposed. Peak concentrations of some azoles in surface waters can approach those which, under continuous long-term exposure in the laboratory, might lead to some aromatase inhibition. However, available data on exposure and effects provide reassurance that the concentrations of azoles found in surface waters are too low to cause adverse effects in fish by interference with their endocrine system. Compared to the widespread observations of feminization and estrogenic effects in (male) fish, there are relatively few papers describing masculinization or defeminization in (female) wild fish populations, suggesting that this is quite a rare phenomenon. The significance of this result is emphasized by the fact that fish are among the best studied organisms in the environment.
Assuntos
Azóis/toxicidade , Transtornos do Desenvolvimento Sexual/induzido quimicamente , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Transtornos do Desenvolvimento Sexual/metabolismo , Relação Dose-Resposta a Droga , Ecossistema , Sistema Endócrino/metabolismo , Monitoramento Ambiental/métodos , Feminino , Feminização , Masculino , Medição de Risco , Fatores de Risco , Caracteres SexuaisRESUMO
Many previous studies presented the effectiveness of ketoconazole (KTZ) against leishmaniasis. However, the bioavailability and therapeutic efficacy of free KTZ are limited due to its low aqueous solubility. In this study, an inclusion complex (IC6HKTZ) was prepared with p-sulfonic acid calix[6]arene (CX6SO3H) to improve the solubility and efficacy of KTZ against Leishmania amazonensis and Leishmania infantum promastigotes. A linear increase in KTZ solubility as a function of CX6SO3H concentration was verified using the phase-solubility diagram. The resulting diagram was classified as AL-type and a 1:1 host-guest stoichiometry was assumed to prepare IC6HKTZ by freeze-drying. FTIR, TG/DSC, XRD, and solid-state 13C NMR spectroscopy analyses were performed to confirm the formation of IC6HKTZ. The solubility enhancement of KTZ by 120.00 µM CX6SO3H was about 95 times. The IC50 values of IC6HKTZ and free KTZ were 3.95 and 14.35 µM for Leishmania amazonensis and 6.74 and 17.47 µM for Leishmania infantum, respectively. The viability of DH82 macrophages was not affected by CX6SO3H. These results show that CX6SO3H is a new supramolecular carrier system that improves antileishmanial activities to KTZ for the treatment of cutaneous and visceral leishmaniasis.
Assuntos
Antiprotozoários , Leishmania infantum , Leishmania mexicana , Animais , Camundongos , Cetoconazol , Antiprotozoários/uso terapêutico , Macrófagos , Camundongos Endogâmicos BALB CRESUMO
The ubiquity of nanoplastics (NPs) raises concerns about their interactions and combined toxicity with other common contaminants. Although azoles are present throughout the natural environment, their interactions with NP are not well known. We investigated the effects of polystyrene (PS) NP on the toxicity of ketoconazole (KCZ) and fluconazole (FCZ) in zebrafish embryos using the developmental toxicity, oxidative-stress-related biochemical parameters, and expression of genes related to neurotoxicity (ache), cardiotoxicity (gata4, bmp4), inflammation (il1b), oxidative stress (sod1, sod2, cyp1a), and apoptosis (bax, bcl2). Co-exposure to NP (1 mg/L) and KCZ/FCZ (1 mg/L) for 96 h reduced the hatching rate, survival rate, and heart rate and increased the malformation rate and catalase activity. The bax/bcl2 ratio, an apoptosis indicator, was higher after NP, KCZ, or FCZ treatment. However, the bax/bcl2 ratio after exposure to NP + KCZ or NP + FCZ was much higher than that after single exposure. Overall, the results indicated that NP aggravated the toxicity of azole by significantly increasing the reactive oxygen species, lipid peroxidation and altering the expression of oxidative-stress- and apoptosis-related genes. The interactive toxicity of PS NP with KCZ/FCZ reported in this study emphasises the need for caution in the release of azole fungicides in the environment.