Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 114(4): 875-894, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891885

RESUMO

Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.


Assuntos
Gleiquênias , Gleiquênias/genética , Filogenia , Proteínas de Plantas/química , Glicoproteínas/metabolismo , Parede Celular/metabolismo
2.
Int J Phytoremediation ; 26(5): 608-617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37705149

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a serious threat to the health of the environment. This study investigated the potential of Azolla filiculoides for the uptake, accumulation, and biodegradation of phenanthrene and pyrene. A- filiculoides plants were treated with 10 and 30 mg L-1 concentrations of phenanthrene and pyrene for the experimental duration of ten days. Phenanthrene and pyrene concentrations were measured using the high-performance liquid chromatography (HPLC) technique. Identification of the intermediate by-products resulting from the biological degradation of PAHs was performed by gas chromatography-mass spectrometry (GC/MS). The quantities of phenanthrene and pyrene in the ten-day treatments with 10 and 30 mg L-1 were 0.007 and 0.011 mg g-1 FW, and 0.048 and 0.079 mg g-1 FW, respectively. The growth parameters in the plants such as fresh weight, dry weight and RFN as well as the content of photosynthetic pigment of the plant decreased significantly compared to the control sample (p < 0.05). Ten compounds were identified from the plant tissue during the decomposition of pyrene and phenanthrene, and none of the PAHs were identified in the aquatic environment. Therefore, the use of A-filiculoides for phytoremediation of water resources contaminated with PAHs is an effective and promising method.


This study estimated the efficiency of Azolla filiculoides phytoremediation in the uptake, accumulation and biodegradation of phenanthrene and pyrene in polluted waters as a total of 100%. High accumulation of pyrene and phenanthrene in the plant tissue decreased plant growth and the number of photosynthetic pigments. GC-MS analysis, identified ten by-products resulting from the degradation of pyrene and phenanthrene in A-filiculoides plant tissue. HPLC analysis showed that there are no substances of PAHs in the water environment.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Fenantrenos/análise , Fenantrenos/metabolismo , Pirenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Plantas/metabolismo
3.
J Environ Manage ; 254: 109802, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731027

RESUMO

In the present study, the potential of Azolla filiculoides (A. filiculoides) was first investigated for degradation of Phenazopyridine (PhP), an analgesic drug. The effects of main variables such as initial pharmaceutical concentration, amount of plant, and pH were studied on the efficiency of the biological process. It was observed that A. filiculoides was able to remove pharmaceuticals from contaminated water up to 85.90% during 48 h. Then, the electro-Fenton (EF) method was applied for further removal of PhP yielding a removal rate of about 98.72% under optimum conditions during 2 h. The effects of variables including the current, amount of catalyst, and pH were also studied in this phase. Also, the probability of adsorption was investigated during this step. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed for the used magnetite nanoparticles, total organic carbon (TOC) were performed to investigate PhP removal efficiency during the reaction time and Gas chromatography-mass spectrometry (GC-MS) were performed to analyze degradation byproducts of PhP. Based on the results, it was found that a combination of these bioremediation and electrochemical removal steps were capable of PhP removal from contaminated water. Therefore, this approach may be effective for phytoremediation of pharmaceutical-contaminated aquatic ecosystems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ecossistema , Peróxido de Hidrogênio , Ferro , Oxirredução , Fenazopiridina
4.
Int J Phytoremediation ; 20(10): 965-972, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29035573

RESUMO

This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor (BCF) was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn, and Co but moderate for Cd, Cu, Ni, and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn, and Cu, but its potency was moderate for Co, Cr, and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn, and Mn (p < 0.05). In general, the BCFs for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.


Assuntos
Araceae , Metais Pesados/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Etiópia
5.
Ecotoxicol Environ Saf ; 118: 11-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25890050

RESUMO

Harmful algal blooms (HABs) contaminate aquatic ecosystems and are responsible for animal poisoning worldwide. We conducted a toxicity test with the aquatic fern and the biofertilizer, Azolla filiculoides. The sporophytes were exposed to three concentrations (0.01, 0.1 and 1µgmL(-1)) of a microcystin (MC) cyanobacterial crude extract and purified MC-LR. The growth of A. filiculoides decreased only at 1µgmL(-1) crude extract concentration while with MC-LR it decreased at all the tested concentrations, indicating that the presence of other compounds in the crude extract altered toxicity and stimulated the fern growth at lower concentrations (0.01 and 0.1µgmL(-1)). Both phycoerythrocyanin and allophycocyanin levels decreased in all the concentrations of crude extract and MC-LR. The phycocyanin had a marked increase at 0.1µgmL(-1) crude extract concentration and a marked decrease at 1µgmL(-1) MC-LR concentration. These changes in the phycobiliprotein content indicate a shift in the antenna pigments of the cyanobionts of A. filiculoides. The changes in two oxidative stress enzymes, glutathione reductase for the crude extract assay and glutathione peroxidase for MC-LR assay, points towards the induction of stress defense responses. The low bioconcentration factor in both crude extract and MC-LR treatments can suggest the low uptake of microcystins, and indicates that the aquatic fern can be used as a biofertilizer and as animal feed but is not suitable for MC phytoremediation.


Assuntos
Gleiquênias/fisiologia , Microcistinas/toxicidade , Simbiose , Poluentes Químicos da Água/toxicidade , Anabaena/química , Ração Animal , Antioxidantes/metabolismo , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Gleiquênias/efeitos dos fármacos , Gleiquênias/crescimento & desenvolvimento , Fertilizantes , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
6.
Ecotoxicology ; 24(9): 1848-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209169

RESUMO

Physiological and biochemical effects of cylindrospermopsin (CYN), a cyanobacterial toxin that inhibits protein synthesis and released during a harmful cyanobacterial bloom, has been overlooked in plants. Therefore, at the present research, the toxic effects (physiological and biochemical) of a crude extract containing CYN were assessed in the aquatic fern Azolla filiculoides exposed to three concentrations (0.05, 0.5 and 5 µg CYN mL(-1)). At 5 µg CYN mL(-1), fern growth rate has showed a drastic decrease (0.001 g g(-1) day(-1)) corresponding to a 99.8% inhibition, but at the concentrations of 0.05 and 0.5 µg CYN mL(-1) the growth rate was similar to the control plants. Growth rate also indicated a IC50 of 2.9 µg CYN mL(-1). Those data point to the presence of other compounds in the crude extract may stimulate the fern growth and/or the fern is tolerant to CYN. Chlorophyll (a and b), carotenoids and protein content as well as the activities of glutathione reductase (GR) and glutathione-S-transferase (GST) has increased at 5 µg CYN mL(-1) which may indicate that photosynthesis and protein synthesis are not affected by CYN and the probable activation of defense and detoxifying mechanisms to overcome the effects induced by the presence of CYN. Low uptake of cylindrospermopsin (1.314 µg CYN g(-1) FW) and low bioconcentration factor (0.401) point towards to a safe use of A. filiculoides as biofertilizer and as food source, but also indicate that the fern is not suitable for CYN phytoremediation.


Assuntos
Aphanizomenon/química , Toxinas Bacterianas/toxicidade , Gleiquênias/efeitos dos fármacos , Uracila/análogos & derivados , Alcaloides , Ração Animal/análise , Biodegradação Ambiental , Toxinas de Cianobactérias , Relação Dose-Resposta a Droga , Gleiquênias/enzimologia , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/metabolismo , Fertilizantes/análise , Uracila/toxicidade
7.
New Phytol ; 202(3): 1069-1082, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24494738

RESUMO

Due to its phenomenal growth requiring neither nitrogen fertilizer nor arable land and its biomass composition, the mosquito fern Azolla is a candidate crop to yield food, fuels and chemicals sustainably. To advance Azolla domestication, we research its dissemination, storage and transcriptome. Methods for dissemination, cross-fertilization and cryopreservation of the symbiosis Azolla filiculoides-Nostoc azollae are tested based on the fern spores. To study molecular processes in Azolla including spore induction, a database of 37 649 unigenes from RNAseq of microsporocarps, megasporocarps and sporophytes was assembled, then validated. Spores obtained year-round germinated in vitro within 26 d. In vitro fertilization rates reached 25%. Cryopreservation permitted storage for at least 7 months. The unigene database entirely covered central metabolism and to a large degree covered cellular processes and regulatory networks. Analysis of genes engaged in transition to sexual reproduction revealed a FLOWERING LOCUS T-like protein in ferns with special features induced in sporulating Azolla fronds. Although domestication of a fern-cyanobacteria symbiosis may seem a daunting task, we conclude that the time is ripe and that results generated will serve to more widely access biochemicals in fern biomass for a biobased economy.


Assuntos
Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Gleiquênias/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cotilédone/crescimento & desenvolvimento , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Criopreservação , Bases de Dados Genéticas , Dessecação , Gleiquênias/genética , Gleiquênias/metabolismo , Fertilização , Congelamento , Redes Reguladoras de Genes/genética , Germinação , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Organogênese/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Esporos/crescimento & desenvolvimento , Simbiose
8.
Water Res ; 254: 121411, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457945

RESUMO

To combat the global loss of wetlands and their essential functions, the restoration and creation of wetlands is imperative. However, wetland development is challenging when soils have been in prolonged agricultural use, often resulting in a substantial nutrient legacy, especially of phosphorous (P). Inundating these soils typically leads to P mobilization, resulting in poor water quality and low biodiversity recovery. As a potential novel means to overcome this challenge, we tested whether cultivation of the floating fern Azolla filiculoides could simultaneously extract and recycle P, and provide a commercial product. Azolla has high growth rates due to the nitrogen fixing capacity of its microbiome and is capable of luxury consumption of P. Azolla cultivation may also accelerate soil P mobilization and subsequent extraction by causing surface water anoxia and the release of iron-bound P. To test this approach, we cultivated Azolla on 15 P-rich former agricultural soils in an indoor mesocosm experiment. Soils were inundated and either left unvegetated or inoculated with A. filiculoides during two 8-week cultivation periods. Biomass was harvested at different intervals (weekly/monthly/bimonthly) to investigate the effect of harvesting frequency on oxygen (O2) and nutrient dynamics. We found that Azolla attained high growth rates only on soils with high mobilization of labile P, as plant cover did not reduce surface water O2 concentrations in the first phase after inundation. This concurred with low porewater iron to P ratios (<10) and high porewater P concentrations. A. filiculoides cultivation substantially reduced surface water nutrient concentrations and extracted P at rates up to 122 kg ha-1 yr-1. We conclude that rapid P extraction by A. filiculoides cultivation is possible on soils rich in labile P, offering new perspectives for wetland rehabilitation. Additional field trials are recommended to investigate long-term feasibility, seasonal variations, and the influence of potential grazers and pathogens.


Assuntos
Gleiquênias , Fosfatos , Fosfatos/metabolismo , Solo , Gleiquênias/metabolismo , Plantas , Ferro/metabolismo
9.
Biotech Histochem ; 98(4): 291-295, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880258

RESUMO

The cyanophycin content of the heterocystous nitrogen-fixing symbiotic cyanobacterium, Anabaena azollae, which inhabits an ovoid cavity in the dorsal leaf lobes of the fern, Azolla filiculoides, is seldom analyzed. To study the cyanophycin content in vegetative cells and heterocysts of A. azollae, we used three fluorochromes: aluminum trichloride, lead citrate and Wilson citroboric solution and Coomassie brilliant blue. Blue and yellow fluorescence were emitted from the polar nodes and cytoplasm cyanophycin granules of the heterocysts when stained with the three fluorochromes. The cyanophycin observed without staining or with Coomassie brilliant blue staining did not alter the results obtained using the fluorochromes. We found that aluminum trichloride, lead acetate and Wilson citroboric solution could be used to detect cyanophycin.


Assuntos
Anabaena , Corantes Fluorescentes , Cloreto de Alumínio , Proteínas de Bactérias , Coloração e Rotulagem
10.
Plants (Basel) ; 12(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765393

RESUMO

Azolla is a floating fern known for its various biological activities. Azolla caroliniana and Azolla filiculoides are multifunctional plants that exhibit biological activity in multiple ways, making them beneficial for various applications. This study aimed to compare the phytochemical composition and antimicrobial, antioxidant, anti-inflammatory, and cytotoxicity activities of two Azolla species, namely Azolla caroliniana and Azolla filiculoides. GC-MS analysis revealed distinct patterns of phytochemical composition in the two species. The methanol extracts of A. caroliniana and A. filiculoides exhibited moderate antimicrobial activity against Geotrichum candidum, Enterococcus faecalis, and Klebsiella pneumonia. Furthermore, both extracts demonstrated potential antioxidant activity, as evidenced by a dose-dependent increase in a ferric-reducing activity power (FRAP) assay. Additionally, the extracts showed promising anti-inflammatory activities, including inhibition of protein denaturation, heat-induced red blood cell (RBC) hemolysis, and nitric oxide (NO) production by macrophages. Moreover, the methanolic extracts of A. caroliniana displayed higher cytotoxicity against HepG2 cells than those of A. filiculoides in a dose-dependent manner. These findings suggest that the methanolic extracts of A. caroliniana and A. filiculoides contain distinct compounds and exhibit potential antioxidant, anti-inflammatory, and cytotoxic activities against HepG2 cells. In conclusion, our data indicate that the methanolic extracts of A. caroliniana and A. filiculoides have differential phytochemical compositions and possess potential antioxidant, anti-inflammatory, and HepG2 cytotoxic activities.

11.
Pak J Biol Sci ; 25(7): 637-641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36098170

RESUMO

<b>Background and Objective:</b> <i> </i>Aquatic plants are the main components of aquatic ecosystems. They play an important role in aquatic environments, reproducing and reconstructing stocks of all aquatic animals. In addition, some animals feed on aquatic plants. <i>Macrobrachium nipponense</i> is an aquatic species that use the aquatic plant as food and a place for reproducing. Therefore, determining the distribution of aquatic plants with the abundance of <i>M. nipponense</i> was essential for a better understanding of the aquatic plant roles in the <i>M. nipponense</i> life cycle. <b>Materials and Methods:</b> In this study, a sample of aquatic plants and <i>M. nipponense</i> during 2017 were taken. Identification and determination of dominant aquatic plants were made in the Anzali Lagoon. <b>Results:</b> The results showed floating macrophytes (<i>Azolla filiculoides</i>,<i> Nelumbo nucifera</i>,<i> Trapa natans</i>,<i> Hydrocotyle vulgaris</i>,<i> Hydrocharis morsus-ranae</i> and<i> Eichhornia crassipes</i>) and submerged macrophytes (<i>Ceratophyllum demersum</i>, <i>Myriophyllum spicatum</i>, <i>Stuckenia pectinata</i> and<i> Potamogeton crispus</i>) were in all of the sampling sites. Canonical correspondence analysis explained 100% of the total variance that correlated with the number and weight of <i>M. nipponense</i> with aquatic plants. The CCA analyses showed the number of <i>M. nipponense</i> was more affected by <i>T. natans</i> and <i>C. demersum</i> while the weight of <i>M. nipponense</i> was more affected by <i>A. filiculoides</i>, Algae and <i>P. crispus</i>. <b>Conclusion:</b> The correlation between aquatic plants and <i>M. nipponense</i> showed a significant correlation among all aquatic plants and the number and weight of <i>M. nipponense</i>. That means all aquatic plant effects on <i>M. nipponense</i>. But <i>Azolla filiculoides</i> (0.96), <i>Trapa natans</i> (0.97) and Algae (0.97) had more correlation coefficients compared to the other aquatic plants.


Assuntos
Palaemonidae , Animais , Ecossistema , Irã (Geográfico) , Plantas
12.
J Environ Health Sci Eng ; 19(2): 1723-1733, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900301

RESUMO

INTRODUCTION: Due to the population growth and reduction of water resources, wastewater treatment and reuse vital. As the secondary wastewater treatment processes enable removes a significant amount of P and N, nutrient-rich effluents can cause eutrophication in water bodies. On the other hand, nutrients removal in sewage treatment using mechanical methods is costly and complex. The aquaculture method using Azolla filiculoides could be an appropriate option for removing total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD) from wastewater. MATERIALS AND METHODS: Synthetic wastewater has been prepared in the typical range of municipal wastewater. Two g fresh weight of an acclimatized A.filiculoides was floated in sample bowls each one containing 500 CC prepared wastewater. Total nitrogen, TP, and COD removal by Azolla filiculoides for 21-days were optimized and investigated using the response surface methodology (RSM). For this aim, the D-optimal method was used to optimize the three independent variables (TP concentration (10.8-84.6 mg l- 1), TN concentration (20-99 mg l- 1), and COD concentration (66.26-415 mg l- 1)) for their maximum removal efficiency of them. Experiments were performed on 28 runs in which independent variables were measured using a HACH DR 5000 spectrometer. RESULTS: Predicted R-squared for COD, TP, TN removal, and Azolla mass (responses) have been equal to -0.0897, 0.8514, 0.7779, and 0.5645, respectively. The model was used to maximize Azolla growth and maximize removal efficiency of nitrogen, phosphorus, and COD that occurred in minimum concentrations of TN (20 mg l- 1), TP (10.8 mg l- 1), and COD (66.26 mg l- 1). The removal efficiency of Azolla was obtained 77.5 % for COD, 66.8 % for TP, and 78.1 % for TN in the optimum condition of independent variables. Also, increase of Azolla mass was 239 %, with desirability of 0.66. The difference between model prediction and model validation testing for Azolla mass increase, COD, TN, and TP removal was equal to ± 11.6 %, ± 7.9 %, ± 0.0 %, and ± 1.9 %, respectively. CONCLUSIONS: Azolla could remove phosphorus in nitrogen deficiency or even lack of nitrogen. Results indicate that removal efficiency has an upward trend as the Azolla growth increases. This kind of fern has a significant effect on removing nitrogen, phosphorus, and COD from an aqueous solution. The removal efficiency of TN, TP, and COD at optimum operating conditions showed good agreement with model-predicted removal efficiency.

13.
Appl Biochem Biotechnol ; 193(2): 502-514, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33026615

RESUMO

Ethanol was produced by separate hydrolysis and fermentation using Azolla filiculoides as a biomass. Thermal acid hydrolysis and enzymatic saccharification were used as pretreatment methods to produce monosaccharides from Azolla. The optimal content for thermal acid hydrolysis of 14% (w/v) Azolla weed slurry produced 16.7-g/L monosaccharides by using 200 mM H2SO4 at 121 °C for 60 min. Enzymatic saccharification using 16 U/mL Viscozyme produced 61.6 g/L monosaccharide at 48 h. Ethanol productions with ethanol yield coefficients from Azolla weed hydrolysate using Kluyveromyces marxianus, Candida lusitaniae Saccharomyces cerevisiae, and Pichia stipitis were 26.8 g/L (YEtOH = 0.43), 23.2 g/L (YEtOH = 0.37), 18.2 g/L (YEtOH = 0.29), and 13.7 g/L (YEtOH = 0.22), respectively. Saccharomyces cerevisiae produces the lowest yield as it utilized only glucose. Bioethanol from Azolla weed hydrolysate can be successfully produced by using Kluyveromyces marxianus because it consumed the mixture of glucose and xylose completely within 60 h.


Assuntos
Biomassa , Candida/crescimento & desenvolvimento , Etanol/metabolismo , Gleiquênias/química , Kluyveromyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento
14.
Water Environ Res ; 93(10): 2122-2134, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013663

RESUMO

Fast and proper treatment of dairy wastewater is necessary before discharging it to the environment. In this study, healthy Azolla filiculoides was used to remove pollutants, including phosphorus (P), sodium (Na), chemical oxygen demand (COD), biological oxygen demand (BOD), and total dissolved solids (TDS) of dairy effluent in batch, continuous system, as well as continuous with the slow stirring system. These systems were handmade. The maximum removal efficiency was related to the P, which obtained 66.25% after 12 h in the batch bioreactor system. The highest removal of 13.69% after 21 h was obtained for Na using continuous with a slow stirring method. The highest removal related to the COD and BOD was 33.53% and 29.93% after 18 h, respectively, in continuous with the slow stirring system. TDS removal was achieved 31.44% after 24 h using the batch system. The results of these three systems were compared with each other using a one-way analysis of variance (ANOVA). There was no significant difference between them. Azolla filiculoides is an abundant plant in northern nature that a biosystem was used for optimum usage. It can be used as an efficient, inexpensive, and affordable bioadsorbent for dairy wastewater treatment. PRACTITIONER POINTS: Live Azolla filiculoides was used to remove pollutants. P, Na, BOD, COD, and TDS were removed from dairy wastewater. Batch, continuous, and continuous with the slow stirring systems were used. Live Azolla was an efficient, inexpensive, and affordable bio-adsorbent for dairy wastewater treatment.


Assuntos
Poluentes Ambientais , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34947630

RESUMO

Due to the shortage of freshwater availability, reclaimed water has become an important source of irrigation water. Nevertheless, emergent contaminants such as antibiotics in reclaimed water can cause potential health risks because antibiotics are nonbiodegradable. In this paper, we report the adsorptive removal of azithromycin (AZM) antibiotics using activated porous carbon prepared from Azolla filiculoides (AF) (AFAC). The influence of the adsorption process variables, such as temperature, pH, time, and adsorbent dosage, is investigated and described. The prepared AFAC is very effective in removing AZM with 87% and 98% removal after the treatment of 75 min, at 303 and 333 K, respectively. The Langmuir, Temkin, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption results. The Freundlich isotherm was best to describe the adsorption isotherm. The adsorption process follows second-order pseudo kinetics. The adsorption was endothermic (ΔH°= 32.25 kJ/mol) and spontaneous (ΔS° = 0.128 kJ/mol·K). Increasing the temperature from 273 to 333 K makes the process more spontaneous (ΔG° = -2.38 and -8.72 KJ/mol). The lower mean square energy of 0.07 to 0.845 kJ/mol confirms the process' physical nature. The results indicate that AFAC can be a potential low-cost adsorbent of AZM from aqueous solutions.

16.
Front Plant Sci ; 12: 727667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745161

RESUMO

Azolla is a genus of floating freshwater ferns. By their high growth and N2 fixation rates, Azolla species have been exploited for centuries by populations of South-east Asia as biofertilizers in rice paddies. The use of Azolla species as a sustainable plant material for diverse applications, such as feeding, biofuel production, and bioremediation, has encountered a growing interest over the last few years. However, high levels of feed deterrent flavonoids in their fronds have discouraged the use of these ferns as a sustainable protein source for animal consumption. Additionally, information on how and to what extent environmental determinants affect the accumulation of secondary metabolites in these organisms remains poorly understood. Moving from these considerations, here, we investigated by an untargeted metabolomics approach the profiles of phenylpropanoid compounds in the fronds of Azolla filiculoides sampled under control and pigment-inducing stress conditions. In parallel, we assayed the expression of essential structural genes of the phenylpropanoid pathway by quantitative RT-PCR. This study provides novel information concerning A. filiculoides phenylpropanoid compounds and their temporal profiling in response to environmental stimuli. In particular, we show that besides the already known 3-deoxyanthocyanidins, anthocyanidins, and proanthocyanidins, this fern can accumulate additional secondary metabolites of outstanding importance, such as chemoattractants, defense compounds, and reactive oxygen species (ROS) scavengers, and crucial as dietary components for humans, such as dihydrochalcones, stilbenes, isoflavones, and phlobaphenes. The findings of this study open an opportunity for future research studies to unveil the interplay between genetic and environmental determinants underlying the elicitation of the secondary metabolites in ferns and exploit these organisms as sustainable sources of beneficial metabolites for human health.

17.
Environ Sci Pollut Res Int ; 27(16): 20358-20369, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240507

RESUMO

In this study, phytoremediation potential of the Azolla filiculoides Lam. was examined for sodium dodecyl benzene sulfonate (SDBS) anionic surfactant. Furthermore, the effect of surfactant treatment on some physiological characteristics of Azolla was studied. The surfactant bioremoval efficiency was studied under variable conditions including treatment time, initial surfactant concentration, Azolla fresh weight, temperature, and pH. Results showed that surfactant removal efficiency of A. filiculoides was significantly enhanced with increasing of temperature, initial surfactant concentration, and amount of Azolla. SDBS led to a reduction in growth rate and total chlorophyll content, but effect index of Azolla increased by higher concentrations of surfactant. In contrast, antioxidant enzymes activities including polyphenol oxidase, ascorbate peroxidase, catalase, and peroxidase, as well as nonenzymatic antioxidants such as total carotenoids and anthocyanin contents significantly increased probably due to the ability of plant to overcome oxidative stress induced by SDBS. An increase in antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazil (DPPH) confirmed this fact. An increase in the amount of hydrogen peroxide and reduction in membrane stability index indicated the induction of oxidative stress. As a result of SDBS biodegradation, 6 homologs of sulfophenyl carboxylates (SPCs) including C2 to C7-SPC and benzenesulfonate ring were identified by liquid chromatography-mass spectroscopy (LC-MS) analysis.


Assuntos
Poluentes Químicos da Água , Benzenossulfonatos , Biodegradação Ambiental , Tensoativos
18.
Bioresour Technol ; 291: 121802, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352164

RESUMO

In this study, the potential of the pyrolysis method to overcome the negative effects of Azolla-filiculoides in infected areas was thoroughly investigated. Non-catalytic pyrolysis experiments were conducted at a temperature range of 400-700 °C. The highest possible bio-oil yield (35 wt%) was attained at 500 °C. To achieve the best chemical composition of bio-oil and higher amount of synthesis gas the catalytic pyrolysis were conducted in a dual-bed quartz reactor at the optimum temperature (500 °C). Although, all three catalysts (pyro-char, modified pyro-char (MPC), and Mg-Ni-Mo/MPC) showed almost an impressive performance in promotion of the common reactions, Mg-Ni-Mo/MPC catalyst have illustrated the stunning results by increasing the percentage of furan compounds from 5.25% to 33.07%, and decreasing the acid compounds from 25.56% to 9.09%. Using GC-MS and GC-FID liquid and gaseous products were fully analyzed. The carbon-based catalysts were also evaluated via FTIR, FESEM, EDX, and BET analyses.


Assuntos
Polifenóis/biossíntese , Traqueófitas/metabolismo , Biocatálise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Óleos de Plantas , Pirólise
19.
Environ Sci Pollut Res Int ; 26(29): 29872-29882, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410835

RESUMO

The hydrophyte Azolla filiculoides can be a useful model to assess if TiO2 NPs may in some way alleviate the Cd injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a pre-treatment with TiO2 NPs, A. filiculoides plants were transferred to cadmium-contaminated water with or without TiO2 nanoparticles. After 5 days of treatment, cadmium uptake, morpho-anatomical, and physiological aspects were studied in plants. The continuous presence of TiO2 nanoparticles, though not increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery, probably thanks to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant apparatus (proline and glutathione peroxidase and catalase activities) and induced a decrease in H2O2 content, but did not suppress TBARS level.


Assuntos
Cádmio/toxicidade , Gleiquênias/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Titânio/química , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Gleiquênias/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fotossíntese/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Data Brief ; 21: 1409-1414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456265

RESUMO

In this article, the data of heavy metals phytoremediation efficiency were provided. The Azolla was collected from the lake around the Rasht city and washed in tap water, then weighed (0.2, 0.4 and 0.8 g), and kept for 15 days in the 100 ml disposable container in the presence 5, 10 and 25 mg/L of lead, nickel and cadmium ions. The samples were stored in polyethylene containers for analysis of the metal concentration with ICP-OES. According to the results, removal efficiency was increased from 40% to 70% at 10 days along with the increasing of the biomass from 2.0 to 8.0 g. The removal efficiency of Ni (II), Cd (II), and Pb (II) were increased by increasing the contact time up to 10 days. The removal efficiency decreased by increasing of the metals concentration from 5 to 25 mg/L. The highest removal efficiency was observed at heavy metals concentrations of 5 mg/L and contact time of 10 days. Results showed that Azolla had a high potential for the removal of heavy metals from water resources and it can be used in phytoremediation of heavy metals in environmental refinement projects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA