RESUMO
Alternative 3' untranslated regions (3' UTRs) are widespread, but their functional roles are largely unknown. We investigated the function of the long BIRC3 3' UTR, which is upregulated in leukemia. The 3' UTR does not regulate BIRC3 protein localization or abundance but is required for CXCR4-mediated B cell migration. We established an experimental pipeline to study the mechanism of regulation and used mass spectrometry to identify BIRC3 protein interactors. In addition to 3'-UTR-independent interactors involved in known BIRC3 functions, we detected interactors that bind only to BIRC3 protein encoded from the mRNA with the long 3' UTR. They regulate several functions, including CXCR4 trafficking. We further identified RNA-binding proteins differentially bound to the alternative 3' UTRs and found that cooperative binding of Staufen and HuR mediates 3'-UTR-dependent complex formation. We show that the long 3' UTR is required for the formation of specific protein complexes that enable additional functions of BIRC3 protein beyond its 3'-UTR-independent functions.
Assuntos
Proteína 3 com Repetições IAP de Baculovírus/genética , Leucemia/genética , Complexos Multiproteicos/genética , Receptores CXCR4/genética , Regiões 3' não Traduzidas/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteína 3 com Repetições IAP de Baculovírus/química , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Proteína Semelhante a ELAV 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/patologia , Complexos Multiproteicos/química , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genéticaRESUMO
Efficient induction of humoral immune responses depends on the orchestrated migration of B cells within lymphoid organs, which is governed by G protein-coupled receptors (GPCRs) responding to chemoattractants, represented by chemokines. After ligand binding, GPCRs are phosphorylated by different GPCR kinases (GRKs) at distinct sites on the receptor C termini, which dictates functional outcomes of ß-arrestin-mediated signaling, ranging from receptor inactivation to effector molecule activation. However, the molecular mechanisms by which individual GRKs are selectively targeted to GPCRs have been poorly understood. Our recent study revealed that a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and 8 (the COMMD3/8 complex) functions as an adaptor that recruits a specific GRK to chemoattractant receptors and plays an important role in the control of B-cell migration during humoral immune responses. In this review, we summarize the current understanding of chemoattractant receptor signaling in the context of humoral immunity and discuss the potential of the COMMD3/8 complex as a therapeutic target for autoimmune diseases.
Assuntos
Imunidade Humoral , Transdução de Sinais , Humanos , Imunidade Humoral/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos B/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Marginal zone B cells (MZBs) represent a unique B-cell sub-population that rapidly differentiate into IgM-secreting plasma cells in response to T-independent (T-I) antigen. Sphingosine 1-phosphate (S1P) promotes MZB localization to the marginal zone. However, intracellular molecules involved in MZB localization and migration remain largely unknown. Here, we show that MZBs lacking the glia maturation factor-γ (GMFG) are impaired in chemotaxis toward S1P under both in vitro and in vivo conditions, suggesting that GMFG is an effector downstream of S1P receptors. GMFG undergoes serine phosphorylation upon S1P stimulation and is required for S1P-induced desensitization of S1P receptor 1 (S1PR1). Compared with wild-type mice, Gmfg-/- mice produce elevated levels of 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific IgM against a T-I type II antigen, NP-Ficoll, accompanied by dysregulated MZB localization. These results identify GMFG as a regulator of S1P-induced MZB chemotaxis and reveal a role for MZB localization in the marginal zone for optimal IgM production against a T-I antigen.
Assuntos
Antígenos T-Independentes/imunologia , Linfócitos B/imunologia , Quimiotaxia/imunologia , Fator de Maturação da Glia/imunologia , Imunoglobulina M/imunologia , Receptores de Esfingosina-1-Fosfato/imunologia , Animais , Fator de Maturação da Glia/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.
Assuntos
Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Imunidade nas Mucosas/imunologia , Nódulos Linfáticos Agregados/metabolismo , Animais , Linfócitos B/imunologia , Quimiocina CXCL12/imunologia , Quimiotaxia de Leucócito/imunologia , Proteína HMGB1/imunologia , Homeostase/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/imunologiaRESUMO
B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood. We used immunofluorescence microscopy, flow cytometry and functional assays to study molecular mechanisms of B-cell migration within human LNs, and found subtle but important differences to previous murine models. In human LNs we find CXCL13 is prominently expressed at the follicular edge, often associated with fibroblastic reticular cells located in these areas, whereas follicular dendritic cells show minimal contribution to CXCL13 expression. Human B cells rapidly downregulate CXCR5 on encountering CXCL13, but recover CXCR5 expression in the CXCL13-low environment. These data suggest that the CXCL13 gradient in human LNs is likely to be different from that proposed in mice. We also identify CD68+ CD11c+ PU.1+ tingible body macrophages within both primary and secondary follicles as likely drivers of the sphingosine-1-phosphate (S1P) gradient that mediates B-cell egress from LNs, through their expression of the S1P-degrading enzyme, S1P lyase. Based on our findings, we present a model of B-cell migration within human LNs, which has both similarities and interesting differences to that proposed for mice.
Assuntos
Quimiocina CXCL13 , Sinais (Psicologia) , Animais , Linfócitos B , Movimento Celular , Humanos , Linfonodos , Camundongos , Receptores CXCR5RESUMO
Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is mainly driven by the Rac guanine exchange factor DOCK2, which contains a binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other phospholipids. While p110δ, the catalytic subunit of the class IA phosphoinositide-3-kinase (PI3K) δ, contributes to CXCR5-mediated B cell migration, the precise interdependency of DOCK2, p110δ, or other PI3K family members during this process remains incompletely understood. Here, we combined in vitro chemotaxis assays and in vivo imaging to examine the contribution of these two factors during murine naïve B cell migration to CXCL13. Our data confirm that p110δ is the main catalytic subunit mediating PI3K-dependent migration downstream CXCR5, whereas it does not contribute to chemotaxis triggered by CXCR4 or CCR7, two other chemokine receptors expressed on naïve B cells. The contribution of p110δ activity to CXCR5-driven migration was complementary to that of DOCK2, and pharmacological or genetic interference with both pathways completely abrogated B cell chemotaxis to CXCL13. Intravital microscopy of control and gene-deficient B cells migrating on FDCs confirmed that lack of DOCK2 caused a profound migration defect, whereas p110δ contributed to cell speed and directionality. B cells lacking active p110δ also displayed defective adhesion to ICAM-1; yet, their migration impairment was maintained on ICAM-1-deficient FDCs. In sum, our data uncover two complementary signaling pathways mediated by DOCK2 and p110δ, which enable CXCR5-driven naïve B cell examination of FDCs.
Assuntos
Molécula 1 de Adesão Intercelular , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Molécula 1 de Adesão Intercelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores CXCR5/metabolismo , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/genética , Quimiotaxia de Leucócito , Receptores de Quimiocinas , Fosfatidilinositóis , Proteínas Ativadoras de GTPaseRESUMO
B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.
Assuntos
Linfócitos B , Peritônio , Proteínas Repressoras/metabolismo , Animais , Homeostase , Camundongos , Cavidade Peritoneal , Receptores Citoplasmáticos e NuclearesRESUMO
Natalizumab and fingolimod are effective multiple sclerosis (MS) therapies that disrupt lymphocyte migration but have differential effects on B cell maturation and trafficking. We investigated their effects on peripheral blood (PB) and cerebrospinal fluid (CSF) B cell repertoires using next-generation deep sequencing. Paired CSF and PB B cell subsets (naïve, CD27+ memory, and CD27-IgD- double-negative B cells and plasmablasts) were collected by applying flow cytometry at baseline and after 6 months of treatment and their respective heavy-chain variable region repertoires assessed by Illumina MiSeq. Treatment with fingolimod contracted, whereas natalizumab expanded circulating PB B cells. CSF B cell numbers remained stable following fingolimod treatment but decreased with natalizumab therapy. Clonal overlap between CSF and PB B cells was reduced with natalizumab treatment but remained stable with fingolimod therapy. Lineage analyses of pre- and posttreatment CSF B cell repertoires revealed large, clonally expanded B cell clusters in natalizumab-treated MS patients but no intrathecal clonal expansion following fingolimod therapy. Our findings suggest that natalizumab diminishes the exchange of peripheral and intrathecal B cells without impacting intrathecal clonal expansion. In contrast, fingolimod treatment fails to alter blood-brain barrier B cell exchange but diminishes intrathecal clonal expansion. Sphingosine-1 phosphate receptor inhibition may alter intrathecal B cell biology in MS.
Assuntos
Linfócitos B/efeitos dos fármacos , Cloridrato de Fingolimode/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Natalizumab/uso terapêutico , Adolescente , Adulto , Idoso , Linhagem da Célula/efeitos dos fármacos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células B de Memória/efeitos dos fármacos , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Adulto JovemRESUMO
Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL-/-) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL-/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration.