Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(3): 926-944, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38725389

RESUMO

PURPOSE: Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS: Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS: Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 µm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 µm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION: This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Imagens de Fantasmas , Humanos , Imagem Ecoplanar/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Feminino , Colina/metabolismo , Substância Branca/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Voluntários Saudáveis , Creatina/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Algoritmos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Ressonância Magnética/métodos
2.
NMR Biomed ; 37(4): e5090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148181

RESUMO

This study demonstrates the feasibility and performance of the point-resolved spectroscopy (PRESS)-based, single-shot diffusion trace-weighted sequence in quantifying the trace apparent diffusion coefficient (ADC) in phantom and in vivo using a 3-T MRI/MRS scanner. The single-shot diffusion trace-weighted PRESS sequence was implemented and compared with conventional diffusion-weighted (DW)-PRESS variants using bipolar and unipolar diffusion-sensitizing gradients. Nine phantom datasets were acquired using each sequence, and seven volunteers were scanned in three different brain regions to determine the range and variability of trace ADC values, and to allow a comparison of trace ADCs among the sequences. This sequence results in a comparatively stable range of trace ADC values that are statistically significantly higher than those produced from unipolar and bipolar DW-PRESS sequences. Only total n-acetylaspartate, total creatine, and total choline were reliably estimated in all sequences with Cramér-Rao lower bounds of, at most, 20%. The larger trace ADCs from the single-shot sequences are probably attributable to the shorter diffusion time relative to the other sequences. Overall, this study presents the first demonstration of the single-shot diffusion trace-weighted sequence in a clinical scanner at 3 T. The results show excellent agreement of phantom trace ADCs computed with all sequences, and in vivo ADCs agree well with the expected differences between gray and white matter. The diffusion trace-weighted sequence could provide an estimate of the trace ADC in a shorter scan time (by nearly a factor of 3) compared with conventional DW-PRESS approaches that require three separate orthogonal directions.


Assuntos
Encéfalo , Substância Branca , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
3.
NMR Biomed ; 37(1): e5037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721118

RESUMO

Diffusion MRI (dMRI) explores tissue microstructures by analyzing diffusion-weighted signal decay measured at different b-values. While relatively low b-values are used for most dMRI models, high b-value diffusion-weighted imaging (DWI) techniques have gained interest given that the non-Gaussian water diffusion behavior observed at high b-values can yield potentially valuable information. In this study, we investigated anomalous diffusion behaviors associated with degeneration of spinal cord tissue using a continuous time random walk (CTRW) model for DWI data acquired across an extensive range of ultrahigh b-values. The diffusion data were acquired in situ from the lumbar level of spinal cords of wild-type and age-matched transgenic SOD1G93A mice, a well-established animal model of amyotrophic lateral sclerosis (ALS) featuring progressive degeneration of axonal tracts in this tissue. Based on the diffusion decay behaviors at low and ultrahigh b-values, we applied the CTRW model using various combinations of b-values and compared diffusion metrics calculated from the CTRW model between the experimental groups. We found that diffusion-weighted signal decay curves measured with ultrahigh b-values (up to 858,022 s/mm2 in this study) were well represented by the CTRW model. The anomalous diffusion coefficient obtained from lumbar spinal cords was significantly higher in SOD1G93A mice compared with control mice (14.7 × 10-5 ± 5.54 × 10-5  vs. 7.87 × 10-5 ± 2.48 × 10-5  mm2 /s, p = 0.01). We believe this is the first study to illustrate the efficacy of the CTRW model for analyzing anomalous diffusion regimes at ultrahigh b-values. The CTRW modeling of ultrahigh b-value dMRI can potentially present a novel approach for noninvasively evaluating alterations in spinal cord tissue associated with ALS pathology.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1 , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Camundongos Transgênicos , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças
4.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257465

RESUMO

This study conducts an in-depth analysis of the failure behavior of woven GFRP under cyclic loading, leveraging AE sensors for monitoring damage progression. Utilizing destructive testing and AE methods, we observed the GFRP's response to varied stress conditions. Key findings include identifying distinct failure modes of GFRP and the effectiveness of AE sensors in detecting broadband frequency signals indicative of crack initiation and growth. Notably, the Felicity effect was observed in AE signal patterns, marking a significant characteristic of composite materials. This study introduces the Ibe-value, based on statistical parameters, to effectively track crack development from inception to growth. The Ibe-values potential for assessing structural integrity in composite materials is highlighted, with a particular focus on its variation with propagation distance and frequency-dependent attenuation. Our research reveals challenges in measuring different damage modes across frequency ranges and distances. The effectiveness of Ibe-values, combined with the challenges of propagation distance, underscores the need for further investigation. Future research aims to refine assessment metrics and improve crack evaluation methods in composite materials, contributing to the field's advancement.

5.
Entropy (Basel) ; 26(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539694

RESUMO

The northeastern margin of the Tibetan Plateau (NE Tibetan Plateau) exhibits active geological structures and has experienced multiple strong earthquakes, with M ≥ 7, throughout history. Particularly noteworthy is the 1920 M81/2 earthquake in the Haiyuan region that occurred a century ago and is documented as one of the deadliest earthquakes. Consequently, analyzing seismic risks in the northeastern margin of the Tibetan Plateau holds significant importance. The b value, a crucial parameter for seismic activity, plays a pivotal role in seismic hazard analyses. This study calculates the spatial b values in this region based on earthquake catalogs since 1970. The study area encompasses several major active faults, and due to variations in b values across different fault types, traditional grid-search methods may introduce significant errors in calculating the spatial b value within complex fault systems. To address this, we employed the hierarchical space-time point-process (HIST-PPM) method proposed by Ogata. This method avoids partitioning earthquake samples, optimizes parameters using Akaike's Bayesian Information Criterion (ABIC) with entropy maximization, and theoretically allows for a higher spatial resolution and more accurate b value calculations. The results indicate a high spatial heterogeneity in b values within the study area. The northwestern and southeastern regions exhibit higher b values. Along the Haiyuan fault zone, the central rupture zone of the Haiyuan earthquake has relatively higher b values than other regions of this fault zone, which is possibly related to the sufficient release of stress during the main rupture of the Haiyuan earthquake. The b values vary from high in the west to low in the east along the Zhongwei fault. On the West Qinling fault zone, the epicenter of the recent Minxian-Zhangxian earthquake is associated with a low b value. In general, regions with low b values correspond well to areas with moderate-strong seismic events in the past 50 years. The spatial differences in b values may reflect variances in seismic hazards among fault zones and regions within the same fault zone.

6.
Hum Brain Mapp ; 44(4): 1371-1388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264194

RESUMO

Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Neuritos/patologia
7.
Small ; 19(48): e2305059, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507833

RESUMO

Electrochemical energy storage devices run on two fundamentally different processes: charge storage across the double layer and redox reactions. A satisfactory understanding of the underlying mechanism is only possible once the two contributions are deconvoluted. The b-value and the ν -ν1/2 model are two familiar steps undertaken to separate these contributions but as it is shown here both metrics are flawed, prone to misinterpretation, frequently invoked without attention to their limitations, and in need of re-examination. After exploring these flaws through the lens of a diverse set of cyclic voltammetry data we opine that use of the b-value be discouraged on account of subjectivity inherent to the metric, and the ν -ν1/2 model be replaced by the one proposed here. This new model ultimately reduces the root mean square error significantly and provides a robust tool for the evaluation of energy storage devices.

8.
Magn Reson Med ; 89(4): 1586-1600, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36426737

RESUMO

PURPOSE: The ADC is a well-established parameter for clinical diagnostic applications, but lacks reproducibility because it is also influenced by the choice diffusion weighting level. A framework is evaluated that is based on multi-b measurement over a wider range of diffusion-weighting levels and higher order tissue diffusion modeling with retrospective, fully reproducible ADC calculation. METHODS: Averaging effect from curve fitting for various model functions at 20 linearly spaced b-values was determined by means of simulations and theoretical calculations. Simulation and patient multi-b image data were used to compare the new approach for diffusion-weighted image and ADC map reconstruction with and without Rician bias correction to an active clinical trial protocol probing three non-zero b-values. RESULTS: Averaging effect at a certain b-value varies for model function and maximum b-value used. Images and ADC maps from the novel procedure are on-par with the clinical protocol. Higher order modeling and Rician bias correction is feasible, but comes at the cost of longer computation times. CONCLUSIONS: Application of the new framework makes higher order modeling more feasible in a clinical setting while still providing patient images and reproducible ADC maps of adequate quality.


Assuntos
Imagem de Difusão por Ressonância Magnética , Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Simulação por Computador
9.
Magn Reson Med ; 90(4): 1657-1671, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317641

RESUMO

PURPOSE: To obtain better microstructural integrity, interstitial fluid, and microvascular images from multi-b-value diffusion MRI data by using a physics-informed neural network (PINN) fitting approach. METHODS: Test-retest whole-brain inversion recovery diffusion-weighted images with multiple b-values (IVIM: intravoxel incoherent motion) were acquired on separate days for 16 patients with cerebrovascular disease on a 3.0T MRI system. The performance of the PINN three-component IVIM (3C-IVIM) model fitting approach was compared with conventional fitting approaches (i.e., non-negative least squares and two-step least squares) in terms of (1) parameter map quality, (2) test-retest repeatability, and (3) voxel-wise accuracy. Using the in vivo data, the parameter map quality was assessed by the parameter contrast-to-noise ratio (PCNR) between normal-appearing white matter and white matter hyperintensities, and test-retest repeatability was expressed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). The voxel-wise accuracy of the 3C-IVIM parameters was determined by 10,000 computer simulations mimicking our in vivo data. Differences in PCNR and CV values obtained with the PINN approach versus conventional fitting approaches were assessed using paired Wilcoxon signed-rank tests. RESULTS: The PINN-derived 3C-IVIM parameter maps were of higher quality and more repeatable than those of conventional fitting approaches, while also achieving higher voxel-wise accuracy. CONCLUSION: Physics-informed neural networks enable robust voxel-wise estimation of three diffusion components from the diffusion-weighted signal. The repeatable and high-quality biological parameter maps generated with PINNs allow for visual evaluation of pathophysiological processes in cerebrovascular disease.


Assuntos
Transtornos Cerebrovasculares , Líquido Extracelular , Humanos , Microcirculação , Imagem de Difusão por Ressonância Magnética/métodos , Redes Neurais de Computação , Movimento (Física) , Reprodutibilidade dos Testes
10.
BMC Med Imaging ; 23(1): 52, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041466

RESUMO

BACKGROUND: To evaluate multiple parameters in multiple b-value diffusion-weighted imaging (DWI) in characterizing breast lesions and predicting prognostic factors and molecular subtypes. METHODS: In total, 504 patients who underwent 3-T magnetic resonance imaging (MRI) with T1-weighted dynamic contrast-enhanced (DCE) sequences, T2-weighted sequences and multiple b-value (7 values, from 0 to 3000 s/mm2) DWI were recruited. The average values of 13 parameters in 6 models were calculated and recorded. The pathological diagnosis of breast lesions was based on the latest World Health Organization (WHO) classification. RESULTS: Twelve parameters exhibited statistical significance in differentiating benign and malignant lesions. alpha demonstrated the highest sensitivity (89.5%), while sigma demonstrated the highest specificity (77.7%). The stretched-exponential model (SEM) demonstrated the highest sensitivity (90.8%), while the biexponential model demonstrated the highest specificity (80.8%). The highest AUC (0.882, 95% CI, 0.852-0.912) was achieved when all 13 parameters were combined. Prognostic factors were correlated with different parameters, but the correlation was relatively weak. Among the 6 parameters with significant differences among molecular subtypes of breast cancer, the Luminal A group and Luminal B (HER2 negative) group had relatively low values, and the HER2-enriched group and TNBC group had relatively high values. CONCLUSIONS: All 13 parameters, independent or combined, provide valuable information in distinguishing malignant from benign breast lesions. These new parameters have limited meaning for predicting prognostic factors and molecular subtypes of malignant breast tumors.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Feminino , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
11.
BMC Med Imaging ; 23(1): 10, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631781

RESUMO

OBJECTIVE: The conventional breast Diffusion-weighted imaging (DWI) was subtly influenced by microcirculation owing to the insufficient selection of the b values. However, the multiparameter derived from multiple b-value exhibits more reliable image quality and maximize the diagnostic accuracy. We aim to evaluate the diagnostic performance of stand-alone parameter or in combination with multiparameter derived from multiple b-value DWI in differentiating malignant from benign breast lesions. METHODS: A total of forty-one patients diagnosed with benign breast tumor and thirty-eight patients with malignant breast tumor underwent DWI using thirteen b values and other MRI functional sequence at 3.0 T magnetic resonance. Data were accepted mono-exponential, bi-exponential, stretched-exponential, aquaporins (AQP) model analysis. A receiver operating characteristic curve (ROC) was used to evaluate the diagnostic performance of quantitative parameter or multiparametric combination. The Youden index, sensitivity and specificity were used to assess the optimal diagnostic model. T-test, logistic regression analysis, and Z-test were used. P value < 0.05 was considered statistically significant. RESULT: The ADCavg, ADCmax, f, and α value of the malignant group were lower than the benign group, while the ADCfast value was higher instead. The ADCmin, ADCslow, DDC and ADCAQP showed no statistical significance. The combination (ADCavg-ADCfast) yielded the largest area under curve (AUC = 0.807) with sensitivity (68.42%), specificity (87.8%) and highest Youden index, indicating that multiparametric combination (ADCavg-ADCfast) was validated to be a useful model in differentiating the benign from breast malignant lesion. CONCLUSION: The current study based on the multiple b-value diffusion model demonstrated quantitatively multiparametric combination (ADCavg-ADCfast) exhibited the optimal diagnostic efficacy to differentiate malignant from benign breast lesions, suggesting that multiparameter would be a promising non-invasiveness to diagnose breast lesions.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Feminino , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/patologia , Sensibilidade e Especificidade , Curva ROC
12.
Skeletal Radiol ; 52(6): 1179-1192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441237

RESUMO

OBJECTIVE: To compare the diagnostic accuracy of diffusion-weighted (DW)-MRI with b-values of 50 s/mm2 and 800 s/mm2 for the detection of bone marrow metastases in children and young adults with solid malignancies. METHODS: In an institutional review board-approved prospective study, we performed 51 whole-body DW-MRI scans in 19 children and young adults (14 males, 5 females; age range: 1-25 years) with metastasized cancers before (n = 19 scans) and after (n = 32 scans) chemotherapy. Two readers determined the presence of focal bone marrow lesions in 10 anatomical areas. A third reader measured ADC and SNR of focal lesions and normal marrow. Simultaneously acquired 18F-FDG-PET scans served as the standard of reference. Data of b = 50 s/mm2 and 800 s/mm2 images were compared with the Wilcoxon signed-rank test. Inter-reader agreement was evaluated with weighted kappa statistics. RESULTS: The SNR of bone marrow metastases was significantly higher compared to normal bone marrow on b = 50 s/mm2 (mean ± SD: 978.436 ± 1239.436 vs. 108.881 ± 109.813, p < 0.001) and b = 800 s/mm2 DW-MRI (499.638 ± 612.721 vs. 86.280 ± 89.120; p < 0.001). On 30 out of 32 post-treatment DW-MRI scans, reconverted marrow demonstrated low signal with low ADC values (0.385 × 10-3 ± 0.168 × 10-3mm2/s). The same number of metastases (556/588; 94.6%; p > 0.99) was detected on b = 50 s/mm2 and 800 s/mm2 images. However, both normal marrow and metastases exhibited low signals on ADC maps, limiting the ability to delineate metastases. The inter-reader agreement was substantial, with a weighted kappa of 0.783 and 0.778, respectively. CONCLUSION: Bone marrow metastases in children and young adults can be equally well detected on b = 50 s/mm2 and 800 s/mm2 images, but ADC values can be misleading.


Assuntos
Neoplasias da Medula Óssea , Neoplasias Ósseas , Masculino , Feminino , Humanos , Adulto Jovem , Criança , Lactente , Pré-Escolar , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Estudos Prospectivos , Neoplasias Ósseas/patologia , Neoplasias da Medula Óssea/diagnóstico por imagem
13.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005477

RESUMO

In this paper, an approach to perform leak state detection and size identification for industrial fluid pipelines with an acoustic emission (AE) activity intensity index curve (AIIC), using b-value and a random forest (RF), is proposed. Initially, the b-value was calculated from pre-processed AE data, which was then utilized to construct AIICs. The AIIC presents a robust description of AE intensity, especially for detecting the leaking state, even with the complication of the multi-source problem of AE events (AEEs), in which there are other sources, rather than just leaking, contributing to the AE activity. In addition, it shows the capability to not just discriminate between normal and leaking states, but also to distinguish different leak sizes. To calculate the probability of a state change from normal condition to leakage, a changepoint detection method, using a Bayesian ensemble, was utilized. After the leak is detected, size identification is performed by feeding the AIIC to the RF. The experimental results were compared with two cutting-edge methods under different scenarios with various pressure levels and leak sizes, and the proposed method outperformed both the earlier algorithms in terms of accuracy.

14.
Entropy (Basel) ; 25(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37372179

RESUMO

The Anatolian region is one of the most seismically active tectonic settings in the world. Here, we perform a clustering analysis of Turkish seismicity using an updated version of the Turkish Homogenized Earthquake Catalogue (TURHEC), which contains the recent developments of the still ongoing Kahramanmaras seismic sequence. We show that some statistical properties of seismic activity are related to the regional seismogenic potential. Mapping the local and global coefficients of variation of inter-event times of crustal seismicity which occurred during the last three decades, we find that territories prone to major seismic events during the last century usually host globally clustered and locally Poissonian seismic activity. We suggest that regions with seismicity associated with higher values of the global coefficient of variation of inter-event times, CV, are likely to be more prone to hosting large earthquakes in the near future than other regions characterized by lower values, if their largest seismic events have the same magnitude. If our hypothesis is confirmed, clustering properties should be considered as a possible additional information source for the assessment of seismic hazard. We also find positive correlations between global clustering properties, the maximum magnitude and the seismic rate, while the b-value of the Gutenberg-Richter law is weakly correlated with them. Finally, we identify possible changes in such parameters before and during the 2023 Kahramanmaras seismic sequence.

15.
Entropy (Basel) ; 25(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37238515

RESUMO

One important question in earthquake prediction is whether a moderate or large earthquake will be followed by an even bigger one. Through temporal b-value evolution analysis, the traffic light system can be used to estimate if an earthquake is a foreshock. However, the traffic light system does not take into account the uncertainty of b-values when they constitute a criterion. In this study, we propose an optimization of the traffic light system with the Akaike Information Criterion (AIC) and bootstrap. The traffic light signals are controlled by the significance level of the difference in b-value between the sample and the background rather than an arbitrary constant. We applied the optimized traffic light system to the 2021 Yangbi earthquake sequence, which could be explicitly recognized as foreshock-mainshock-aftershock using the temporal and spatial variations in b-values. In addition, we used a new statistical parameter related to the distance between earthquakes to track earthquake nucleation features. We also confirmed that the optimized traffic light system works on a high-resolution catalog that includes small-magnitude earthquakes. The comprehensive consideration of b-value, significance probability, and seismic clustering might improve the reliability of earthquake risk judgment.

16.
Neuroimage ; 262: 119535, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931306

RESUMO

To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d∥=1.7µm2/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ∼2-2.5µm2/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.


Assuntos
Neuritos , Substância Branca , Axônios , Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
17.
Neuroimage ; 250: 118903, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033674

RESUMO

Diffusion MRI measures of the human brain provide key insight into microstructural variations across individuals and into the impact of central nervous system diseases and disorders. One approach to extract information from diffusion signals has been to use biologically relevant analytical models to link millimetre scale diffusion MRI measures with microscale influences. The other approach has been to represent diffusion as an anomalous transport process and infer microstructural information from the different anomalous diffusion equation parameters. In this study, we investigated how parameters of various anomalous diffusion models vary with age in the human brain white matter, particularly focusing on the corpus callosum. We first unified several established anomalous diffusion models (the super-diffusion, sub-diffusion, quasi-diffusion and fractional Bloch-Torrey models) under the continuous time random walk modelling framework. This unification allows a consistent parameter fitting strategy to be applied from which meaningful model parameter comparisons can be made. We then provided a novel way to derive the diffusional kurtosis imaging (DKI) model, which is shown to be a degree two approximation of the sub-diffusion model. This link between the DKI and sub-diffusion models led to a new robust technique for generating maps of kurtosis and diffusivity using the sub-diffusion parameters ßSUB and DSUB. Superior tissue contrast is achieved in kurtosis maps based on the sub-diffusion model. 7T diffusion weighted MRI data for 65 healthy participants in the age range 19-78 years was used in this study. Results revealed that anomalous diffusion model parameters α and ß have shown consistent positive correlation with age in the corpus callosum, indicating α and ß are sensitive to tissue microstructural changes in ageing.


Assuntos
Envelhecimento/fisiologia , Corpo Caloso/anatomia & histologia , Corpo Caloso/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
18.
Neuroimage ; 254: 118958, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217204

RESUMO

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , China , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
19.
NMR Biomed ; 35(3): e4639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729838

RESUMO

RATIONALE: Hyperpolarized (HP) 129 Xe-MRI provides non-invasive methods to quantify lung function and structure, with the 129 Xe apparent diffusion coefficient (ADC) being a well validated measure of alveolar airspace size. However, the experimental factors that impact the precision and accuracy of HP 129 Xe ADC measurements have not been rigorously investigated. Here, we introduce an analytical model to predict the experimental uncertainty of 129 Xe ADC estimates. Additionally, we report ADC dependence on age in healthy pediatric volunteers. METHODS: An analytical expression for ADC uncertainty was derived from the Stejskal-Tanner equation and simplified Bloch equations appropriate for HP media. Parameters in the model were maximum b-value (bmax ), number of b-values (Nb ), number of phase encoding lines (Nph ), flip angle and the ADC itself. This model was validated by simulations and phantom experiments, and five fitting methods for calculating ADC were investigated. To examine the lower range for 129 Xe ADC, 32 healthy subjects (age 6-40 years) underwent diffusion-weighted 129 Xe MRI. RESULTS: The analytical model provides a lower bound on ADC uncertainty and predicts that decreased signal-to-noise ratio yields increases in relative uncertainty (ϵADC) . As such, experimental parameters that impact non-equilibrium 129 Xe magnetization necessarily impact the resulting ϵADC . The values of diffusion encoding parameters (Nb and bmax ) that minimize ϵADC strongly depend on the underlying ADC value, resulting in a global minimum for ϵADC . Bayesian fitting outperformed other methods (error < 5%) for estimating ADC. The whole-lung mean 129 Xe ADC of healthy subjects increased with age at a rate of 1.75 × 10-4  cm2 /s/yr (p = 0.001). CONCLUSIONS: HP 129 Xe diffusion MRI can be improved by minimizing the uncertainty of ADC measurements via uncertainty propagation. Doing so will improve experimental accuracy when measuring lung microstructure in vivo and should allow improved monitoring of regional disease progression and assessment of therapy response in a range of lung diseases.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio , Adolescente , Adulto , Fatores Etários , Criança , Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Razão Sinal-Ruído , Incerteza , Adulto Jovem
20.
NMR Biomed ; 35(1): e4613, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510596

RESUMO

The fiber orientation density function (fODF) in white matter is a primary physical quantity that can be estimated with diffusion MRI. It has often been employed for fiber tracking and microstructural modeling. Requirements for the construction of high fidelity fODFs, in the sense of having good angular resolution, adequate data to avoid sampling errors, and minimal noise artifacts, are described for fODFs calculated with fiber ball imaging. A criterion is formulated for the number of diffusion encoding directions needed to achieve a given angular resolution. The advantages of using large b-values (≥6000 s/mm2 ) are also discussed. For the direct comparison of different fODFs, a method is developed for defining a local frame of reference tied to each voxel's individual axonal structure. The Matusita anisotropy axonal is proposed as a scalar fODF measure for quantifying angular variability. Experimental results, obtained at 3 T from human volunteers, are used as illustrations.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas , Substância Branca/diagnóstico por imagem , Anisotropia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA