Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32619424

RESUMO

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Assuntos
Memória Imunológica/fisiologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histona Desacetilases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica
2.
Immunity ; 57(4): 843-858.e5, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513666

RESUMO

Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.


Assuntos
Interleucina-4 , Fatores de Transcrição , Linfócitos B , Centro Germinativo , Interleucina-4/metabolismo , Células B de Memória , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
3.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38761804

RESUMO

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína Coestimuladora de Linfócitos T Induzíveis , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-cbl , Células T Auxiliares Foliculares , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Animais , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Camundongos , Humanos , Células T Auxiliares Foliculares/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteólise , Ubiquitinação , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Autofagia/imunologia
4.
Immunity ; 54(10): 2245-2255.e4, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464595

RESUMO

BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Camundongos
5.
Immunity ; 51(5): 826-839.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732165

RESUMO

T follicular helper (Tfh) cells provide essential help to B cells in germinal center (GC) reactions. Bcl6 is the obligatory lineage transcription factor in Tfh cells. Here, we examined the molecular pathways that induce Bcl6 gene expression and underscore Bcl6-dependent function during Tfh cell commitment. Integration of genome-wide Bcl6 occupancy in Tfh cells and differential gene expression analyses suggested an important role for the transcription factor Tox2 in Tfh cell differentiation. Ectopic expression of Tox2 was sufficient to drive Bcl6 expression and Tfh development. In genome-wide ChIP-seq analyses, Tox2-bound loci associated with Tfh cell differentiation and function, including Bcl6. Tox2 binding was associated with increased chromatin accessibility at these sites, as measured by ATAC-seq. Tox2-/- mice exhibited defective Tfh differentiation, and inhibition of both Tox2 and the related transcription factor Tox abolished Tfh differentiation. Thus, a Tox2-Bcl6 axis establishes a transcriptional feed-forward loop that promotes the Tfh program.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/metabolismo
6.
Immunity ; 51(3): 465-478.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422869

RESUMO

The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.


Assuntos
Diferenciação Celular/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Cell ; 80(5): 845-861.e10, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232656

RESUMO

Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Região de Controle de Locus Gênico/imunologia , Animais , Linfócitos B/citologia , Linhagem Celular Tumoral , Centro Germinativo/citologia , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/imunologia , Camundongos , Camundongos Knockout , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/imunologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Transativadores/genética , Transativadores/imunologia
8.
Genes Dev ; 33(17-18): 1265-1279, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395741

RESUMO

Chromosomal rearrangements of the mixed lineage leukemia (MLL) gene occur in ∼10% of B-cell acute lymphoblastic leukemia (B-ALL) and define a group of patients with dismal outcomes. Immunohistochemical staining of bone marrow biopsies from most of these patients revealed aberrant expression of BCL6, a transcription factor that promotes oncogenic B-cell transformation and drug resistance in B-ALL. Our genetic and ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analyses showed that MLL-AF4 and MLL-ENL fusions directly bound to the BCL6 promoter and up-regulated BCL6 expression. While oncogenic MLL fusions strongly induced aberrant BCL6 expression in B-ALL cells, germline MLL was required to up-regulate Bcl6 in response to physiological stimuli during normal B-cell development. Inducible expression of Bcl6 increased MLL mRNA levels, which was reversed by genetic deletion and pharmacological inhibition of Bcl6, suggesting a positive feedback loop between MLL and BCL6. Highlighting the central role of BCL6 in MLL-rearranged B-ALL, conditional deletion and pharmacological inhibition of BCL6 compromised leukemogenesis in transplant recipient mice and restored sensitivity to vincristine chemotherapy in MLL-rearranged B-ALL patient samples. Oncogenic MLL fusions strongly induced transcriptional activation of the proapoptotic BH3-only molecule BIM, while BCL6 was required to curb MLL-induced expression of BIM. Notably, peptide (RI-BPI) and small molecule (FX1) BCL6 inhibitors derepressed BIM and synergized with the BH3-mimetic ABT-199 in eradicating MLL-rearranged B-ALL cells. These findings uncover MLL-dependent transcriptional activation of BCL6 as a previously unrecognized requirement of malignant transformation by oncogenic MLL fusions and identified BCL6 as a novel target for the treatment of MLL-rearranged B-ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Biomarcadores Tumorais/genética , Sobrevivência Celular/genética , Células Cultivadas , Deleção de Genes , Marcação de Genes , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Regiões Promotoras Genéticas/genética
9.
Immunity ; 47(3): 481-497.e7, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930660

RESUMO

Transcriptional regulation during CD4+ T cell fate decisions enables their differentiation into distinct states, guiding immune responses toward antibody production via Tfh cells or inflammation by Teff cells. Tfh-Teff cell fate commitment is regulated by mutual antagonism between the transcription factors Bcl6 and Blimp-1. Here we examined how T cell receptor (TCR) signals establish and arbitrate Bcl6-Blimp-1 counter-antagonism. We found that the TCR-signal-induced transcription factor Irf4 is essential for the differentiation of Bcl6-expressing Tfh and Blimp-1-expressing Teff cells. Increased TCR signaling raised Irf4 amounts and promoted Teff cell fates at the expense of Tfh ones. Importantly, orthogonal induction of Irf4 expression redirected Tfh cell fate trajectories toward those of Teff. Mechanistically, we linked greater Irf4 abundance with its recruitment toward low-affinity binding sites within Teff cell cis-regulatory elements, including those of Prdm1. We propose that the Irf4 locus functions as the "reader" of TCR signal strength, and in turn, concentration-dependent activity of Irf4 "writes" T helper fate choice.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Antígenos/imunologia , Sítios de Ligação , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imunização , Fatores Reguladores de Interferon/genética , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia
10.
Proc Natl Acad Sci U S A ; 120(35): e2220853120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607223

RESUMO

Ly6Clo monocytes are a myeloid subset that specializes in the surveillance of vascular endothelium. Ly6Clo monocytes have been shown to derive from Ly6Chi monocytes. NOTCH2 signaling has been implicated as a trigger for Ly6Clo monocyte development, but the basis for this effect is unclear. Here, we examined the impact of NOTCH2 signaling of myeloid progenitors on the development of Ly6Clo monocytes in vitro. NOTCH2 signaling induced by delta-like ligand 1 (DLL1) efficiently induced the transition of Ly6Chi TREML4- monocytes into Ly6Clo TREML4+ monocytes. We further identified two additional transcriptional requirements for development of Ly6Clo monocytes. Deletion of BCL6 from myeloid progenitors abrogated development of Ly6Clo monocytes. IRF2 was also required for Ly6Clo monocyte development in a cell-intrinsic manner. DLL1-induced in vitro transition into Ly6Clo TREML4+ monocytes required IRF2 but unexpectedly could occur in the absence of NUR77 or BCL6. These results imply a transcriptional hierarchy for these factors in controlling Ly6Clo monocyte development.


Assuntos
Endotélio Vascular , Monócitos , Hematopoese , Transdução de Sinais
11.
Genes Chromosomes Cancer ; 63(1): e23211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897298

RESUMO

High-grade B-cell lymphoma (HGBL)/diffuse large B-cell lymphoma (DLBCL) with rearrangements (R) in MYC and BCL2 and/or BCL6 are correlated with poor prognosis. Little is known about the impact of other genetic alterations (gain (G) or amplification (A)) of these genes. The aim of the study was to investigate whether we can identify new prognostic subgroups. Fluorescence in situ hybridization (FISH) results from 169 HGBL/DLBCL were retrospectively categorized into: (1) concurrent MYC-R and BCL2-R and/or BCL6-R-samples with MYC-R and BCL2-R (+/- BCL6-R); n = 21, and HGBL/DLBCL with MYC-R and BCL6-R; n = 11; (2) concurrent R and G/A in MYC and BCL2 and/or BCL6 called "alternative HGBL/DLBCL"-samples with (n = 16) or without (n = 6) BCL2 involvement; (3) BCL2 and/or BCL6 alterations without MYC involvement (n = 35); (4) concurrent G/A in MYC and BCL2 and/or BCL6 without R (n = 25); and (5) "No alterations" (n = 55). Patients with HGBL/DLBCL-MYC/BCL2 and "alternative" HGBL/DLBCL (with BCL2 involvement) had significantly worse survival rates compared to the "no alterations" group. G/A of these genes in the absence of rearrangements did not show any prognostic significance. HGBL/DLBCL with MYC-R and BCL6-R without BCL2 involvement showed a better survival rate compared to HGBL/DLBCL-MYC/BCL2. According to immunohistochemistry, "double/triple" expression (DEL/TEL) did not show a significantly worse outcome compared to absent DEL/TEL. This study highlights the continued value of FISH assessment of MYC, BCL2, and BCL6 in the initial evaluation of HGBL/DLBCL with different survival rates between several genetic subgroups.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Rearranjo Gênico , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética , Estudos Retrospectivos
12.
Chromosoma ; 132(4): 257-268, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37227491

RESUMO

Transcriptional repressor B cell lymphoma 6 (Bcl6) is a major transcription factor involved in Tfh cell differentiation and germinal center response, which is regulated by a variety of biological processes. However, the functional impact of post-translational modifications, particularly lysine ß-hydroxybutyrylation (Kbhb), on Bcl6 remains elusive. In this study, we revealed that Bcl6 is modified by Kbhb to affect Tfh cell differentiation, resulting in the decrease of cell population and cytokine IL-21. Furthermore, the modification sites are identified from enzymatic reactions to be lysine residues at positions 376, 377, and 379 by mass spectrometry, which is confirmed by site-directed mutagenesis and functional analyses. Collectively, our present study provides evidence on the Kbhb modification of Bcl6 and also generates new insights into the regulation of Tfh cell differentiation, which is a starting point for a thorough understanding of the functional involvement of Kbhb modification in the differentiations of Tfh and other T cells.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-bcl-6/genética , Lisina , Linfócitos T Auxiliares-Indutores , Diferenciação Celular
13.
Biochem Biophys Res Commun ; 705: 149745, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38452514

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease where Th2-type immune responses are dominant. In the lesional skin of AD, keratinocytes show differentiation defects and secrete proinflammatory cytokines and chemokines, amplifying Th2-type responses in AD. We previously reported that inducible loss of B-cell lymphoma 6 (Bcl6), a transcription repressor and a master transcriptional regulator of follicular helper T cells and germinal center B cells, in the whole body results in upregulation of Th2-related cytokines in mouse skin. However, the role of Bcl6 in keratinocytes remains to be clarified. Here, we observed that BCL6 positively regulates the expression of keratinocyte differentiation markers and plasma membrane localization of adherence junctional proteins in keratinocyte cell culture. Although keratinocyte-specific loss of Bcl6 alone did not induce AD-like skin inflammation, it aggravates MC903-induced AD-like skin inflammation in mice. In addition, Bcl6 expression is decreased in the epidermis of lesional skin from MC903-induced AD-like skin inflammation in mice. These results strongly suggest that Bcl6 downregulation in keratinocytes contributes to the development and aggravation of AD-like skin inflammation in mice.


Assuntos
Calcitriol/análogos & derivados , Dermatite Atópica , Camundongos , Animais , Epiderme/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Inflamação/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
14.
Trends Immunol ; 42(4): 336-349, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663954

RESUMO

Follicular helper T cells (TFH) are essential B cell-help providers in the formation of germinal centers (GCs), affinity maturation of GC B cells, differentiation of high-affinity antibody-producing plasma cells, and production of memory B cells. The transcription factor (TF) B cell lymphoma 6 (Bcl6) is at the center of gene regulation in TFH biology, including differentiation and function, but how Bcl6 does this, and what additional TFs contribute, remain complex questions. This review focuses on advances in our understanding of Bcl6-mediated gene regulation of TFH functions, and the modulation of TFH by other TFs. These advances may have important implications in deciphering how repressor TFs can regulate many immunological cell types. An improved understanding of TFH biology will likely provide insights into biomedically relevant diseases.


Assuntos
Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Diferenciação Celular , Regulação da Expressão Gênica , Centro Germinativo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
15.
EMBO Rep ; 23(8): e54104, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35766181

RESUMO

Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper-layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6-dependent molecular pathway in regulation of developmental cell death during corticogenesis.


Assuntos
Neocórtex , Fatores de Transcrição , Morte Celular/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
16.
Exp Lung Res ; 50(1): 25-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419581

RESUMO

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Hiperóxia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo
17.
Adv Exp Med Biol ; 1459: 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017840

RESUMO

T lymphocytes consist of several subtypes with distinct functions that help to coordinate an immune response. They are generated within the thymus through a sequential developmental pathway that produces subsets with diverse antigen specificities and functions. Naïve T cells populate peripheral lymphoid organs and are activated upon foreign antigen encounter. While most T cells die soon after activation, a memory population survives and is able to quickly respond to secondary challenges, thus providing long-term immunity to the host. Although cell identity is largely stable and is instructed by cell-specific transcriptional programs, cells may change their transcriptional profiles to be able to adapt to new functionalities. Central to these dynamic processes are transcription factors, which control cell fate decisions, through direct regulation of gene expression. In this book chapter, we review the functions of the transcription factor B-cell lymphoma 6 (BCL6), which directs the fate of several lymphocyte subsets, including helper, cytotoxic, and innate-like T cells, but can also be involved in lymphomagenesis in humans.


Assuntos
Diferenciação Celular , Proteínas Proto-Oncogênicas c-bcl-6 , Humanos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Diferenciação Celular/imunologia , Animais , Linfócitos T/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação da Expressão Gênica , Ativação Linfocitária/imunologia
18.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479995

RESUMO

Ectopic lymphoid tissue containing B cells forms in the meninges at late stages of human multiple sclerosis (MS) and when neuroinflammation is induced by interleukin (IL)-17 producing T helper (Th17) cells in rodents. B cell differentiation and the subsequent release of class-switched immunoglobulins have been speculated to occur in the meninges, but the exact cellular composition and underlying mechanisms of meningeal-dominated inflammation remain unknown. Here, we performed in-depth characterization of meningeal versus parenchymal Th17-induced rodent neuroinflammation. The most pronounced cellular and transcriptional differences between these compartments was the localization of B cells exhibiting a follicular phenotype exclusively to the meninges. Correspondingly, meningeal but not parenchymal Th17 cells acquired a B cell-supporting phenotype and resided in close contact with B cells. This preferential B cell tropism for the meninges and the formation of meningeal ectopic lymphoid tissue was partially dependent on the expression of the transcription factor Bcl6 in Th17 cells that is required in other T cell lineages to induce isotype class switching in B cells. A function of Bcl6 in Th17 cells was only detected in vivo and was reflected by the induction of B cell-supporting cytokines, the appearance of follicular B cells in the meninges, and of immunoglobulin class switching in the cerebrospinal fluid. We thus identify the induction of a B cell-supporting meningeal microenvironment by Bcl6 in Th17 cells as a mechanism controlling compartment specificity in neuroinflammation.


Assuntos
Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Th17/metabolismo , Animais , Linfócitos B/imunologia , Comunicação Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Centro Germinativo/imunologia , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Tecido Parenquimatoso/imunologia , Tecido Parenquimatoso/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Células Th17/imunologia , Células Th17/fisiologia
19.
Rinsho Ketsueki ; 65(5): 335-339, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825510

RESUMO

A 69-year-old woman was previously treated with antibiotics for suspected pyelonephritis due to fever but showed limited improvement. Contrast-enhanced CT revealed heterogeneous areas of decreased contrast enhancement in both kidneys, along with an elevated soluble level of the IL-2 receptor (5,090 U/ml), and thus the patient was referred to our department for further evaluation. A percutaneous renal biopsy performed due to suspected malignant lymphoma confirmed lymphoma cell infiltration into the renal interstitium. Immunohistochemical staining was positive for MYC/BCL2/BCL6, leading to the diagnosis of stage IVB primary renal triple expressor diffuse large B cell lymphoma (DLBCL). Due to acute kidney injury, continuous hemodiafiltration (CHDF) was initiated, followed by rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy. The patient's renal function improved rapidly, and complete response was achieved after six cycles of R-CHOP. Although DLBCL is a common lymphoma, the primary renal subtype is extremely rare and poses both diagnostic and therapeutic challenges. This case highlights the potential clinical implications of combining CHDF with chemotherapy to achieve complete response despite an initial poor prognosis based on the patient's overall clinical condition and pathology.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Doxorrubicina , Neoplasias Renais , Linfoma Difuso de Grandes Células B , Prednisona , Vincristina , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/patologia , Feminino , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/administração & dosagem , Vincristina/administração & dosagem , Vincristina/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Ciclofosfamida/administração & dosagem , Rituximab/administração & dosagem , Rituximab/uso terapêutico , Diálise Renal , Resultado do Tratamento , Hemodiafiltração
20.
J Cell Mol Med ; 27(24): 4145-4154, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849385

RESUMO

Amyloid-ß1-42 (Aß1-42 ) is strongly associated with Alzheimer's disease (AD). The aim of this study is to elucidate whether and how miR-6076 participates in the modulation of amyloid-ß (Aß)-induced neuronal damage. To construct the neuronal damage model, SH-SY5Y cells were treated with Aß1-42 . By qRT-PCR, we found that miR-6076 is significantly upregulated in Aß1-42 -treated SH-SY5Y cells. After miR-6076 inhibition, p-Tau and apoptosis levels were downregulated, and cell viability was increased. Through online bioinformatics analysis, we found that B-cell lymphoma 6 (BCL6) was a directly target of miR-6076 via dual-luciferase reporter assay. BCL6 overexpression mediated the decrease in elevated p-Tau levels and increased viability in SH-SY5Y cells following Aß1-42 treatment. Our results suggest that down-regulation of miR-6076 could attenuate Aß1-42 -induced neuronal damage by targeting BCL6, which provided a possible target to pursue for prevention and treatment of Aß-induced neuronal damage in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Neuroblastoma , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apoptose/genética , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA