Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 73(3): 275-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627265

RESUMO

Multiple myeloma (MM) is a hematologic malignancy defined by the clonal proliferation of transformed plasma cells. Despite tremendous advances in the treatment paradigm of MM, a cure remains elusive for most patients. Although long-term disease control can be achieved in a very large number of patients, the acquisition of tumor resistance leads to disease relapse, especially in patients with triple-class refractory MM (defined as resistance to immunomodulatory agents, proteosome inhibitors, and monoclonal antibodies). There is an unmet need for effective treatment options in these patients. Chimeric antigen receptor (CAR) T-cell therapy is a novel approach that has demonstrated promising efficacy in the treatment of relapsed, refractory MM (RRMM). These genetically modified cellular therapies have demonstrated deep and durable remissions in other B-cell malignancies, and current efforts aim to achieve similar results in patients with RRMM. Early studies have demonstrated remarkable response rates with CAR T-cell therapy in RRMM; however, durable responses with CAR T-cell therapies in myeloma have yet to be realized. In this comprehensive review, the authors describe the development of CAR T-cell therapies in myeloma, the outcomes of notable clinical trials, the toxicities and limitations of CAR T-cell therapies, and the strategies to overcome therapeutic challenges of CAR T cells in the hope of achieving a cure for multiple myeloma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento , Terapia Baseada em Transplante de Células e Tecidos
2.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990948

RESUMO

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Assuntos
Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Interleucina-6 , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Camundongos , Receptor do Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/genética , Plasmócitos/imunologia , Plasmócitos/metabolismo , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Camundongos Endogâmicos C57BL
3.
Mol Ther ; 32(6): 1835-1848, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659225

RESUMO

While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein. The interaction is mediated through an epitope on the TAG that is occluded in the native alpha-fetoprotein molecule. In vitro and in vivo data demonstrate that the activation and cytolytic activity of ARC-T cells is dependent on the dose of SparX protein and only occurs when ARC-T cells are engaged with SparX proteins bound to antigen-positive cells. ARC-T cell specificity was also redirected in vivo by changing SparX proteins that recognized different tumor antigens to combat inherent or acquired tumor heterogeneity. The ARC-SparX platform is designed to expand patient and physician access to cell therapy by controlling potential toxicities through SparX dosing regimens and enhancing tumor elimination through sequential or simultaneous administration of SparX proteins engineered to bind different tumor antigens.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Ligação Proteica
4.
Br J Haematol ; 204(2): 571-575, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957838

RESUMO

Multiple myeloma (MM) cells from 1 out of 20 patient expressed high basal levels of membrane B-cell maturation antigen (BCMA, TNFRSF17, CD269), which was not upregulated by gamma-secretase inhibitor, suggesting a defective BCMA shedding by gamma-secretase. Genetic analyses of the patient's bone marrow DNA showed no mutations within the BCMA coding region, but rather partial deletion of PSEN1 and amplification of PSEN2, which encode alternative catalytic units of gamma-secretase. Altogether the data suggest that pt#12 MM cells express high and dysregulated BCMA with no shedding, due to genetic alterations of one or more gamma-secretase subunits.


Assuntos
Mieloma Múltiplo , Humanos , Antígeno de Maturação de Linfócitos B , Secretases da Proteína Precursora do Amiloide , Medula Óssea/química
5.
Br J Haematol ; 204(1): 186-190, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37833834

RESUMO

Very scarce data exist about outcomes of relapsed multiple myeloma patients who have failed proteasome inhibitor, immunomodulatory drug, anti-CD38 monoclonal antibody and therapies targeting B-cell maturation antigen (BCMA) (Quad-class exposed [QCE]). In this retrospective single-centre study, we determined progression-free survival (PFS) and overall survival (OS) from anti-BCMA failure in 45 QCE patients. Seven (16%) patients received antibody-drug conjugate, 20 (44%) bispecific antibodies and 18 (40%) CAR-T cell. Thirty patients (67%) received ≥1 subsequent line of treatment. PFS was 4.4 months (95% CI = 2.4-12.5) and OS 6.3 months (95% CI = 3.9-14.4). Having an adverse prognosis, QCE myeloma patients remain an unmet medical need.


Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Estudos Retrospectivos , Prognóstico , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva
6.
Cancer Immunol Immunother ; 73(6): 100, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630291

RESUMO

In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Anticorpos , Antígenos CD28 , Terapia Baseada em Transplante de Células e Tecidos
7.
Artigo em Inglês | MEDLINE | ID: mdl-39259226

RESUMO

PURPOSE: Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells (PC) in the bone marrow (BM). B-cell maturation antigen (BCMA) is predominantly expressed in malignant plasma cells, and associated with the proliferation, survival, and progression of various myeloma cells. Given these important roles, BCMA emerges as an ideal target antigen for MM therapy. However, effective stratification of patients who may benefit from targeted BCMA therapy and real-time monitoring the therapeutic efficacy poses significant clinical challenge. This study aims to develop a BCMA targeted diagnostic modality, and preliminarily explore its potential value in the radio-immunotherapy of MM. EXPERIMENTAL DESIGN: Using zirconium-89 (89Zr, t1/2 = 78.4 h) for labeling the BCMA-specific antibody, the BCMA-targeting PET tracer [89Zr]Zr-DFO-BCMAh230430 was prepared. The EC50 values of BCMAh230430 and DFO-BCMAh230430 were determined by ELISA assay. BCMA expression was assessed in four different tumor cell lines (MM.1S, RPMI 8226, BxPC-3, and KYSE520) through Western blot and flow cytometry. In vitro binding affinity was determined by cell uptake studies of [89Zr]Zr-DFO-BCMAh230430 in these tumor cell lines. For in vivo evaluation, PET imaging and ex vivo biodistribution studies were conducted in tumor-bearing mice to evaluate imaging performance and systemic distribution of [89Zr]Zr-DFO-BCMAh230430. Immunochemistry analysis was performed to detect BCMA expression in tumor tissues, confirming the specificity of our probe. Furthermore, we explored the anti-tumor efficacy of Lutetium-177 labeled BCMA antibody, [177Lu]Lu-DTPA-BCMAh230430, in tumor bearing-mice to validate its radioimmunotherapy potential. RESULTS: The radiolabeling of [89Zr]Zr-DFO-BCMAh230430 and [177Lu]Lu-DTPA-BCMAh230430 showed satisfactory radiocharacteristics, with a radiochemical purity exceeding 99%. ELISA assay results revealed closely aligned EC50 values for BCMAh230430 and DFO-BCMAh230430, which are 57 pM and 67 pM, respectively. Western blot and flow cytometry analyses confirmed the highest BCMA expression level. Cell uptake data indicated that MM.1S cells had a total cellular uptake (the sum of internalization and surface binding) of 38.3% ± 1.53% for [89Zr]Zr-DFO-BCMAh230430 at 12 h. PET imaging of [89Zr]Zr-DFO-BCMAh230430 displayed radioactive uptake of 7.71 ± 0.67%ID/g in MM.1S tumors and 4.13 ± 1.21%ID/g in KYSE520 tumors at 168 h post-injection (n = 4) (P < 0.05), consistent with ex vivo biodistribution studies. Immunohistochemical analysis of tumor tissues confirmed higher BCMA expression in MM.1S tumors xenograft compared to KYSE520 tumors. Notably, [177Lu]Lu-DTPA-BCMAh230430 showed some anti-tumor efficacy, evidenced by slowed tumor growth. Furthermore, no significant difference in body weight was observed in MM.1S tumor-bearing mice over 14 days of administration with or without [177Lu]Lu-DTPA-BCMAh230430. CONCLUSIONS: Our study has successfully validated the essential role of [89Zr]Zr-DFO-BCMAh230430 in non-invasively monitoring BCMA status in MM tumors, showing favorable tumor uptake and specific binding affinity to MM tumors. Furthermore, our research revealed, as a proof-of-concept, the effectiveness of [177Lu]Lu-DTPA-BCMAh230430 in radioimmunotherapy for MM tumors. In conclusion, we present a novel BCMA antibody-based radiotheranostic modality that holds promise for achieving efficient and precise MM diagnostic and therapy.

8.
Eur J Haematol ; 112(2): 248-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37222081

RESUMO

OBJECTIVES: Multiple myeloma (MM) accounts for 10% of hematologic malignancies. However, most of the patients suffered from relapsed/refractory disease. We would like to expand CAR T cell therapy to treat MM using our current platform. METHODS: BCMA CAR T lymphocytes were generated for volunteers or MM patients. The transduction efficiency was detected by the ddPCR technique. Immunophenotyping and exhaustion markers were monitored by flow cytometry. The efficacy of BCMA CAR T cells was tested using coculturing with BCMA CAR or mock, and the positive and negative targets, K562/hBCMA-ECTM and K562, respectively. RESULTS: BCMA CAR T cells were generated from consented volunteers or MM patients and could be detected CAR BCMA expression at a mean of 4.07 ± 1.95 or 4.65 ± 1.21 copies/cell, respectively. Those modified T cells were primarily effector memory T cells. Our BCMA CAR T cells could explicitly eradicate the K562/hBCMA-ECTM cell line while the K562 cell line survived. Interestingly, the BCMA CAR, mock T cells, and peripheral blood mononuclear cells from MM patients expressed similar levels of the exhaustion makers, TIM-3, LAG-3, and PD1. CONCLUSIONS: Our BCMA CAR T cells, mainly effector/effector memory, could eliminate BCMA-expressing cells in vitro and had similar levels of exhaustion markers among different populations.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Linhagem Celular Tumoral , Leucócitos Mononucleares/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T
9.
Eur J Haematol ; 112(4): 493-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099401

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has become an important intervention in the management of relapsed and relapsed/refractory multiple myeloma (MM). Currently, B-cell maturation antigen (BCMA) is the most targeted surface protein due to its ubiquitous expression on plasma cells, with increasing expression of this essential transmembrane protein on malignant plasma cells as patients develop more advanced disease. This review will explore the earliest CAR-T trials in myeloma, discuss important issues involved in CAR-T manufacturing and processing, as well as review current clinical trials that led to the approval of the two commercially available CAR-T products, Idecabtagene vicleucel and ciltacabtagene autoleucel. The most recent data from trials investigating the use of CAR-T as an earlier line of therapy will be presented. Finally, the problem of relapses after CAR-T will be presented, including several theories as to why CAR-T therapies fail and possible clinical caveats. The next generation of MM-specific CAR-T will likely include new targets such as G-protein-coupled receptor class C, Group 5, member D (GPRC5D) and signaling lymphocyte activation molecular Family 7 (SLAMF7). The role of CAR-T in the treatment of MM will undoubtedly increase exponentially in the next decade.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/genética , Plasmócitos , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Proteínas de Membrana
10.
Eur J Haematol ; 113(1): 66-71, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549191

RESUMO

The rise of immuno-oncology, including the use of chimeric antigen receptor T-cell (CAR-T) therapy is bringing in a new wave of cancer treatments, particularly in hematologic malignancies. However, data on their adverse events, particularly of the eye, is under-reported. To assess the ocular adverse events associated with the six FDA-approved CAR-T cell therapies, a disproportionality analysis utilizing the FAERS database was conducted from the first quarter of 2017 to the third quarter of 2023, as well as a systematic review of case reports of ocular events following CAR-T cell therapy up to December 20, 2023. A total of 53 ocular adverse events were identified from the FDAs FAERS database. The adverse events most frequently observed were mydriasis and xerophthalmia with tisagenlecleucel (Kymriah). The systematic review resulted in 8 case reports encompassing 19 patients which included a total of 27 events. This study demonstrates the importance of anticipation of potential ocular adverse events by ophthalmologists and oncologists as they can greatly contribute to morbidity in patients with cancer.


Assuntos
Imunoterapia Adotiva , Farmacovigilância , Humanos , Oftalmopatias/etiologia , Oftalmopatias/terapia , Oftalmopatias/induzido quimicamente , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos
11.
Future Oncol ; : 1-12, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110421

RESUMO

WHAT IS THIS SUMMARY ABOUT?: This is a summary of a phase 3 clinical trial called CARTITUDE-4. This trial compared the anti-cancer therapy ciltacabtagene autoleucel (or cilta-cel) with standard therapies in people who have multiple myeloma, a cancer that affects specific kinds of blood cells called plasma cells. The people in the study had been treated with 1 to 3 previous treatments for multiple myeloma, including a common anti-myeloma treatment called lenalidomide, but their multiple myeloma did not get better. HOW WAS THE STUDY IN THIS SUMMARY CONDUCTED?: About half of the 419 participants in this study received cilta-cel, while the other half received standard therapies, or therapies that are commonly used to treat multiple myeloma. Participants who received cilta-cel had a type of immune cell called T cells collected from their blood and genetically modified to recognize a specific protein found on myeloma cells. These modified T cells, which comprise cilta-cel, were then infused back into the bloodstream. WHAT WERE THE RESULTS OF THE STUDY?: After approximately 1 year in the study, more participants were alive without their cancer getting worse in the cilta-cel group (76%) than in the standard therapies group (49%). The most common side effects in both groups were infections and low blood cell counts. Cytokine release syndrome (a potentially serious side effect caused by overactivation of the immune system) was common but mostly mild. Neurotoxicities (including immune effector cell-associated neurotoxicity syndrome, which can cause symptoms such as headaches, changes in consciousness, and difficulty with memory, attention, speaking, or understanding others) were less common and were reported in 20.5% of participants treated with cilta-cel. WHAT WERE THE MAIN CONCLUSIONS REPORTED BY THE RESEARCHERS?: In CARTITUDE-4, more participants treated with cilta-cel showed improvements and were alive with control of their disease 12 months after receiving cilta-cel compared with participants who received standard therapies.Clinical Trial Registration: NCT04181827 (CARTITUDE-4) (ClinicalTrials.gov).

12.
J Oncol Pharm Pract ; : 10781552241268429, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090994

RESUMO

INTRODUCTION: Teclistamab, a bispecific T-cell engaging antibody targeting B-cell maturation antigen (BCMA), is indicated for the treatment of relapsed or refractory multiple myeloma after at least four lines of therapy. It has boxed warnings for life threatening cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). To mitigate these risks, teclistamab is initiated using step-up doses. This article examines safety event rates following the implementation of a 2-day separation between step-up doses at one institution to streamline patient care. METHODS: This was a retrospective, single-center study encompassing all patients who received teclistamab within a 1-year period. The primary endpoint was the overall incidence of CRS and ICANS. Secondary endpoints included hospital length of stay, hematological toxicities, infection rates, among other adverse events. RESULTS: A total of 27 patients were included in the analysis and stratified into accelerated (days 1,3,5) or standard (days 1,4,7) dosing groups. CRS occurred in 48% (11) of patients for the accelerated dosing and 50% (2) for the standard dosing group. ICANS was seen in 17% (4) of patients in the accelerated dosing group and none in the standard dosing group. Average length of stay in the accelerated dose was 7.6 days versus 9.2 days in the standard dose group. CONCLUSION: Accelerated dose escalation of teclistamab yielded safety event rates comparable to those in the literature. These findings may support outpatient administration for teclistamab. Accelerated dose escalation strategy allowed for the optimization of hospitalization and resources.

13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338672

RESUMO

The search for target antigens for CAR-T cell therapy against multiple myeloma defined the B-cell maturation antigen (BCMA) as an interesting candidate. Several studies with BCMA-directed CAR-T cell therapy showed promising results. Second-generation point-of-care BCMA.CAR-T cells were manufactured to be of a GMP (good manufacturing practice) standard using the CliniMACS Prodigy® device. Cytokine release in BCMA.CAR-T cells after stimulation with BCMA positive versus negative myeloma cell lines, U266/HL60, was assessed via intracellular staining and flow cytometry. The short-term cytotoxic potency of CAR-T cells was evaluated by chromium-51 release, while the long-term potency used co-culture (3 days/round) at effector/target cell ratios of 1:1 and 1:4. To evaluate the activation and exhaustion of CAR-T cells, exhaustion markers were assessed via flow cytometry. Stability was tested through a comparison of these evaluations at different timepoints: d0 as well as d + 14, d + 90 and d + 365 of cryopreservation. As results, (1) Killing efficiency of U266 cells correlated with the dose of CAR-T cells in a classical 4 h chromium-release assay. There was no significant difference after cryopreservation on different timepoints. (2) In terms of endurance of BCMA.CAR-T cell function, BCMA.CAR-T cells kept their ability to kill all tumor cells over six rounds of co-culture. (3) BCMA.CAR-T cells released high amounts of cytokines upon stimulation with tumor cells. There was no significant difference in cytokine release after cryopreservation. According to the results, BCMA.CAR-T cells manufactured under GMP conditions exerted robust and specific killing of target tumor cells with a high release of cytokines. Even after 1 year of cryopreservation, cytotoxic functions were maintained at the same level. This gives clinicians sufficient time to adjust the timepoint of BCMA.CAR-T cell application to the patient's course of the underlying disease.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/patologia , Citocinas/metabolismo , Linfócitos T , Criopreservação
14.
Clin Immunol ; 253: 109689, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422057

RESUMO

While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells. Here we show that the expression of intracellular TACI-S increases with B cell activation, and colocalizes with BCMA and their ligand, APRIL. We show that the loss of APRIL impairs isotype class switch and leads to distinct metabolic and transcriptional changes. Our studies suggest that intracellular TACI-S and APRIL along with BCMA direct long-term PC differentiation and survival.


Assuntos
Antígeno de Maturação de Linfócitos B , Proteína Transmembrana Ativadora e Interagente do CAML , Camundongos , Animais , Humanos , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Linfócitos B , Plasmócitos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fator Ativador de Células B
15.
Cancer Immunol Immunother ; 72(12): 3931-3937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924369

RESUMO

Multiple Myeloma remains incurable, and there is a need for therapies with novel mechanisms of action. Recently, B cell maturation antigen targeted therapy has demonstrated deep and durable responses in a largely treated population. However, the relapse rate of myeloma patients after anti-BCMA treatment strategies is increasing worldwide, and one of the most challenging issues for them is to choose the best therapy sequencing. After anti-BCMA treatment, retreatment with anti-BCMA drugs remains an option, but new targets are emerging strongly. One of them is G protein-coupled receptor, class C group 5 member D (GPRC5D), that due to the very promising data from the use of chimeric antigen receptor T-cells (CAR-T) and bispecific antibodies (BsAb) seems to be the ideal candidate in the relay of myeloma treatment at relapse. In this literature review, we discuss data from treatment with the new drugs at relapse after anti-BCMA therapies, observing an undeniable benefit from the use of drugs directed against GPRC5D.


Assuntos
Mieloma Múltiplo , Humanos , Imunoterapia Adotiva , Antígeno de Maturação de Linfócitos B , Recidiva Local de Neoplasia/terapia , Imunoterapia , Receptores Acoplados a Proteínas G
16.
Mod Pathol ; 36(4): 100050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788077

RESUMO

B-cell maturation antigen (BCMA) is a promising target for the treatment of multiple myeloma (MM) because the expression of this protein is largely limited to B-cell sets, plasma cells, MM, and other B-cell malignancies. Early studies assessing BCMA protein expression and localization have used insufficiently qualified immunohistochemistry assays, which have reported broad ranges of BCMA expression. As a result, our understanding of BCMA tissue expression derived from these data is limited, specifically the prevalence of BCMA expression on the cell surface/membrane, which has mechanistic relevance to the antimyeloma activity of several novel biotherapeutics. Here, we report on the qualification and application of a novel anti-BCMA immunohistochemistry antibody, 805G12. This antibody shows robust detection of BCMA in formalin-fixed, decalcified bone marrow tissue and provides key insights into membrane BCMA expression. The clone 805G12, which was raised against an intracellular C-terminal domain peptide of membrane BCMA, exhibited increased sensitivity and superior specificity across healthy and diseased tissue compared with the frequently referenced commercial reagent AF193. The new clone also demonstrated a broad range of expression of BCMA in MM and diffuse large B-cell lymphoma specimens. Additionally, cross-reactivity with closely related tumor necrosis factor receptor family members was observed with AF193 but not with 805G12. Furthermore, via established 805G12 and other independent BCMA assays, it was concluded that proteolytic processing by γ-secretase contributes to the levels of BCMA localized to the plasma membrane. As BCMA-directed therapeutics emerge to address the need for more effective treatment in the relapsed or refractory MM disease setting, the implementation of a qualified assay would ensure that reliable and consistent data on BCMA surface expression are used to inform clinical trial decisions and patient responses.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Imuno-Histoquímica , Imunoterapia Adotiva , Antígeno de Maturação de Linfócitos B/metabolismo , Plasmócitos/patologia
17.
Cytotherapy ; 25(2): 192-201, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496302

RESUMO

BACKGROUND AIMS: The considerable efficacy of B-cell maturation antigen-targeted chimeric antigen receptor (CAR)-T-cell therapy has been extensively demonstrated in the treatment of relapsed or refractory multiple myeloma. Nevertheless, in clinical practice, prolonged hematologic toxicity (PHT) extends hospital stay and impairs long-term survival. METHODS: This retrospective study reviewed 99 patients with relapsed or refractory multiple myeloma who underwent B-cell maturation antigen CAR-T-cell therapy at our institution between April 2018 and September 2021 (ChiCTR1800017404). RESULTS: Among 93 evaluable patients, the incidence of prolonged hematologic toxicities was high after CAR-T-cell infusion, including 38.71% (36/93) of patients with prolonged neutropenia, 22.58% (21/93) with prolonged anemia and 59.14% (55/93) with prolonged thrombocytopenia. In addition, 9.68% (9/93) of patients experienced prolonged pancytopenia. Our multivariate analyses identified that cytokine profiles were independent risk factors for PHTs, whereas a sufficient baseline hematopoietic function and high CD4/CD8 ratio of CAR-T cells were protective factors for PHTs after CAR-T-cell infusion. Subgroup analyses found that the kinetics of post-CAR-T hematologic parameters were primarily determined by the collective effects of cytokine release syndrome and baseline hematopoietic functions, and showed influential weights for the three lineages. CONCLUSIONS: Our findings improve the understanding of the impact of cytokines on hematopoietic functions, which could contribute to the mechanism investigation and exploration of potential intervention strategies.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Estudos Retrospectivos , Imunoterapia Adotiva/efeitos adversos , Citocinas , Terapia Baseada em Transplante de Células e Tecidos
18.
BMC Cancer ; 23(1): 123, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750969

RESUMO

BACKGROUND: B cell maturation antigen (BCMA) targeted immunotherapies have demonstrated remarkable clinical efficacy in multiple myeloma (MM). Here, we evaluated the BCMA expression in MM and other plasma cell dyscrasias (PCDs), hoping to provide a potential treatment strategy for the relapsed/refractory PCDs besides MM. METHODS: From January 2018 to August 2021, 377 patients with PCDs were enrolled in this study, including 334 MM, 21 systemic light chain amyloidosis (AL), 5 POEMS syndrome, 14 monoclonal gammopathy of undetermined significance (MGUS), and three monoclonal gammopathy of renal significance (MGRS). The membrane-bound BCMA expression measured by multiparameter flow cytometry was defined by BCMA positivity rate and the mean fluorescence intensity (MFI). RESULTS: The patients with MM had a median BCMA positive rate of 88.55% (range, 0.2% - 99.9%) and median BCMA MFI of 1281 (range, 109 - 48586). While the median BCMA positive rate in other PCDs was 55.8% (6.2% -98.9%), and the median BCMA MFI was 553 (182- 5930). BCMA expression level was negatively associated with hemoglobin concentration in multivariate analysis in terms of BCMA positive rate and MFI. CONCLUSIONS: In conclusion, BCMA has the potential to be a therapeutic target for other PCDs besides MM.


Assuntos
Linfoma de Células B , Mieloma Múltiplo , Paraproteinemias , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B/análise , Antígeno de Maturação de Linfócitos B/metabolismo , Imunoterapia , Imunoterapia Adotiva
19.
Transpl Infect Dis ; 25 Suppl 1: e14157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37787373

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T-cell therapies have revolutionized the management of acute lymphoblastic leukemia, non-Hodgkin lymphoma, and multiple myeloma but come at the price of unique toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and long-term "on-target off-tumor" effects. METHODS: All of these factors increase infection risk in an already highly immunocompromised patient population. Indeed, infectious complications represent the key determinant of non-relapse mortality after CAR-T cells. The temporal distribution of these risk factors shapes different infection patterns early versus late post-CAR-T-cell infusion. Furthermore, due to the expression of their targets on B lineage cells at different stages of differentiation, CD19, and B-cell maturation antigen (BCMA) CAR-T cells induce distinct immune deficits that could require different prevention strategies. Infection incidence is the highest during the first month post-infusion and subsequently decreases thereafter. However, infections remain relatively common even a year after infusion. RESULTS: Bacterial infections predominate early after CD19, while a more equal distribution between bacterial and viral causes is seen after BCMA CAR-T-cell therapy, and fungal infections are universally rare. Cytomegalovirus (CMV) and other herpesviruses are increasingly breported, but whether routine monitoring is warranted for all, or a subgroup of patients, remains to be determined. Clinical practices vary substantially between centers, and many areas of uncertainty remain, including CMV monitoring, antibacterial and antifungal prophylaxis and duration, use of immunoglobulin replacement therapy, and timing of vaccination. CONCLUSION: Risk stratification tools are available and may help distinguish between infectious and non-infectious causes of fever post-infusion and predict severe infections. These tools need prospective validation, and their integration in clinical practice needs to be systematically studied.


Assuntos
Infecções por Citomegalovirus , Neoplasias Hematológicas , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B , Neoplasias Hematológicas/terapia , Terapia Baseada em Transplante de Células e Tecidos
20.
Future Oncol ; 19(12): 811-818, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37132225

RESUMO

WHAT IS THIS SUMMARY ABOUT?: This is a summary of a phase 1-2 clinical trial called MajesTEC-1. This trial tested the cancer drug teclistamab in people with relapsed or refractory multiple myeloma, a cancer that forms in a certain type of white blood cells known as plasma cells. Most participants who took part in the study had at least 3 prior treatments for multiple myeloma before their cancer came back. HOW WAS THE STUDY IN THIS SUMMARY CONDUCTED?: A total of 165 participants from 9 countries were included in this study. All participants were given teclistamab once per week and monitored for side effects. Once participants started taking teclistamab, they were checked regularly to monitor if their cancer had no change, improved (responded to treatment), or worsened or spread (known as disease progression). WHAT WERE THE RESULTS OF THE STUDY?: After approximately 14.1 months of follow-up (from 2020 to 2021), 63% of participants who were given teclistamab had a decrease in myeloma burden, meaning that they responded to treatment with teclistamab. Participants who responded to teclistamab lived without their myeloma coming back for approximately 18.4 months. The most common side effects were infections, cytokine release syndrome, abnormally low white and red blood cell counts (neutropenia, lymphopenia, and anemia), and low platelet cell counts (thrombocytopenia). Approximately 65% of participants experienced serious side effects. WHAT DO THE RESULTS OF THIS STUDY MEAN?: Overall, more than half of the participants (63%) in the MajesTEC-1 study responded to treatment with teclistamab despite previous myeloma treatment failures. Clinical Trial Registration: NCT03145181, NCT04557098 (ClinicalTrials.gov).


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA