Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pregnancy Childbirth ; 24(1): 23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172840

RESUMO

OBJECTIVES: The 15q11.2 BP1-BP2 microdeletion is associated with neurodevelopmental diseases. However, most studies on this microdeletion have focused on adults and children. Thus, in this study, we summarized the molecular characteristics of fetuses with the 15q11.2 BP1-BP2 microdeletion and their postnatal follow-up to guide prenatal diagnosis. METHODS: Ten thousand fetuses were retrospectively subjected to karyotype analysis and chromosome microarray analysis. RESULTS: Chromosome microarray analysis revealed that 37 (0.4%) of the 10,000 fetuses had 15q11.2 BP1-BP2 microdeletions. The fragment size of the 15q11.2 BP1-BP2 region was approximately 312-855 kb and encompassed TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. Twenty-five of the 37 fetuses with this microdeletion showed phenotypic abnormalities. The most common ultrasonic structural abnormality was congenital heart disease, followed by renal dysplasia and Dandy-Walker malformation. The 15q11.2 BP1-BP2 microdeletion was inherited from the father and mother in 6 and 10 cases, respectively, and de novo inherited in 4 cases. In the postnatal follow-up, 16.1% of the children had postnatal abnormalities. CONCLUSION: Fetuses with the 15q11.2 BP1-BP2 microdeletion showed high proportions of phenotypic abnormalities, but the specificity of penetrance was low. Thus, fetuses with this syndrome are potentially at a higher risk of postnatal growth/behavioral problems and require continuous monitoring of growth and development.


Assuntos
Transtornos Cromossômicos , Deficiência Intelectual , Adulto , Criança , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Seguimentos , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
2.
Funct Integr Genomics ; 23(2): 174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219715

RESUMO

Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.


Assuntos
Cromossomos Humanos , Variações do Número de Cópias de DNA , Humanos , Proteínas de Ligação a RNA , Íntrons , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
3.
J Intellect Disabil Res ; 67(7): 679-689, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129092

RESUMO

BACKGROUND: Investigating copy number variations (CNVs) such as microdeletions or microduplications can significantly contribute to discover the aetiology of neurodevelopmental disorders. 15q11.2 genomic region, including NIPA1 and NIPA2 genes, contains a recurrent but rare CNV, flanked by the break points BP1 and BP2. Both BP1-BP2 microdeletion and microduplication have been associated with intellectual disability (ID), neuropsychiatric/behavioural disturbances and mild clinical features, even if with incomplete penetrance and variable expressivity. The pathogenic role of this CNV is quite unclear though. Unknown variants in other DNA regions and parent-of-origin effect (POE) are some of the mechanisms that have been proposed as an explanation of the wide phenotypic variability. As NIPA1 and NIPA2 encode for proteins that mediate magnesium (Mg2+ ) metabolism, it has been suggested that urinary Mg2+ levels could potentially represent informative and affordable biomarkers for a rapid screening of 15q11.2 duplications or deletions. Furthermore, magnesium supplementation has been proposed as possible therapeutic strategy. METHODS: Thirty one children with ID and/or other neurodevelopmental disorders carrying either a duplication or a deletion in 15q11.2 BP1-BP2 region have been recruited. When available, blood samples from parents have been analysed to identify the CNV origin. All participants underwent family and medical data collection, physical examination and neuropsychiatric assessment. Electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) scan were performed in 15 children. In addition, 11 families agreed to participate to the assessment of blood and urinary Mg2+ levels. RESULTS: We observed a highly variable phenotypic spectrum of developmental issues encompassing ID in most subjects as well as a variety of behavioural disorders such as autism and attention-deficit disorder/attention-deficit hyperactivity disorder. Dysmorphic traits and malformations were detected only in a minority of the participants, and no clear association with growth anomalies was found. Abnormal brain MRI and/or EEG were reported respectively in 64% and 92% of the subjects. Inheritance assessment highlighted an excess of duplication of maternal origin, while cardiac alterations were detected only in children with 15q11.2 CNV inherited from the father. We found great variability in Mg2+ urinary values, without correlation with 15q11.2 copy numbers. However, the variance of urinary Mg2+ levels largely increases in individuals with 15q11.2 deletion/duplication. CONCLUSIONS: This study provides further evidence that 15q11.2 BP1-BP2 CNV is associated with a broad spectrum of neurodevelopmental disorders and POE might be an explanation for clinical variability. However, some issues may question the real impact of 15q11.2 CNV on the phenotype in the carriers: DNA sequencing could be useful to exclude other pathogenic gene mutations. Our results do not support the possibility that urinary Mg2+ levels can be used as biomarkers to screen children with neurodevelopmental disorders for 15q11.2 duplication/deletion. However, there are evidences of correlations between 15q11.2 BP1-BP2 CNV and Mg2+ metabolism and future studies may pave the way to new therapeutic options.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Aberrações Cromossômicas , Magnésio , Variações do Número de Cópias de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Biomarcadores
4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901699

RESUMO

Prader-Willi syndrome (PWS) is a complex genetic disorder with three PWS molecular genetic classes and presents as severe hypotonia, failure to thrive, hypogonadism/hypogenitalism and developmental delay during infancy. Hyperphagia, obesity, learning and behavioral problems, short stature with growth and other hormone deficiencies are identified during childhood. Those with the larger 15q11-q13 Type I deletion with the absence of four non-imprinted genes (NIPA1, NIPA2, CYFIP1, TUBGCP5) from the 15q11.2 BP1-BP2 region are more severely affected compared with those with PWS having a smaller Type II deletion. NIPA1 and NIPA2 genes encode magnesium and cation transporters, supporting brain and muscle development and function, glucose and insulin metabolism and neurobehavioral outcomes. Lower magnesium levels are reported in those with Type I deletions. The CYFIP1 gene encodes a protein associated with fragile X syndrome. The TUBGCP5 gene is associated with attention-deficit hyperactivity disorder (ADHD) and compulsions, more commonly seen in PWS with the Type I deletion. When the 15q11.2 BP1-BP2 region alone is deleted, neurodevelopment, motor, learning and behavioral problems including seizures, ADHD, obsessive-compulsive disorder (OCD) and autism may occur with other clinical findings recognized as Burnside-Butler syndrome. The genes in the 15q11.2 BP1-BP2 region may contribute to more clinical involvement and comorbidities in those with PWS and Type I deletions.


Assuntos
Síndrome de Prader-Willi , Humanos , Proteínas de Transporte/genética , Cromossomos , Cromossomos Humanos Par 15 , Magnésio , Síndrome de Prader-Willi/genética
5.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562221

RESUMO

The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype.


Assuntos
Cromossomos Humanos Par 15/genética , Marcadores Genéticos , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Aberrações Cromossômicas , Cognição , Família , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Sequenciamento do Exoma , Adulto Jovem
6.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384786

RESUMO

The 15q11.2 BP1-BP2 microdeletion (Burnside-Butler) syndrome is emerging as the most frequent pathogenic copy number variation (CNV) in humans associated with neurodevelopmental disorders with changes in brain morphology, behavior, and cognition. In this study, we explored functions and interactions of the four protein-coding genes in this region, namely NIPA1, NIPA2, CYFIP1, and TUBGCP5, and elucidate their role, in solo and in concert, in the causation of neurodevelopmental disorders. First, we investigated the STRING protein-protein interactions encompassing all four genes and ascertained their predicted Gene Ontology (GO) functions, such as biological processes involved in their interactions, pathways and molecular functions. These include magnesium ion transport molecular function, regulation of axonogenesis and axon extension, regulation and production of bone morphogenetic protein and regulation of cellular growth and development. We gathered a list of significantly associated cardinal maladies for each gene from searchable genomic disease websites, namely MalaCards.org: HGMD, OMIM, ClinVar, GTR, Orphanet, DISEASES, Novoseek, and GeneCards.org. Through tabulations of such disease data, we ascertained the cardinal disease association of each gene, as well as their expanded putative disease associations. This enabled further tabulation of disease data to ascertain the role of each gene in the top ten overlapping significant neurodevelopmental disorders among the disease association data sets: (1) Prader-Willi Syndrome (PWS); (2) Angelman Syndrome (AS); (3) 15q11.2 Deletion Syndrome with Attention Deficit Hyperactive Disorder & Learning Disability; (4) Autism Spectrum Disorder (ASD); (5) Schizophrenia; (6) Epilepsy; (7) Down Syndrome; (8) Microcephaly; (9) Developmental Disorder, and (10) Peripheral Nervous System Disease. The cardinal disease associations for each of the four contiguous 15q11.2 BP1-BP2 genes are NIPA1- Spastic Paraplegia 6; NIPA2-Angelman Syndrome and Prader-Willi Syndrome; CYFIP1-Fragile X Syndrome and Autism; TUBGCP5-Prader-Willi Syndrome. The four genes are individually associated with PWS, ASD, schizophrenia, epilepsy, and Down syndrome. Except for TUBGCP5, the other three genes are associated with AS. Unlike the other genes, TUBGCP5 is also not associated with attention deficit hyperactivity disorder and learning disability, developmental disorder, or peripheral nervous system disease. CYFIP1 was the only gene not associated with microcephaly but was the only gene associated with developmental disorders. Collectively, all four genes were associated with up to three-fourths of the ten overlapping neurodevelopmental disorders and are deleted in this most prevalent known pathogenic copy number variation now recognized among humans with these clinical findings.


Assuntos
Deficiência Intelectual/genética , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte de Cátions/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Humanos , Deficiência Intelectual/patologia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética
7.
Ann Hum Genet ; 83(3): 187-191, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779116

RESUMO

Copy number variants (CNVs) of 15q11.2 yielded conflicting reports on their association with schizophrenia (SZ), indicating the need for replication studies. Because there are no 15q11.2 CNV studies on Indian patients, we began by testing 307 SZ patients and 359 age- and sex-matched controls from South India. Using an improved multiplex ligation probe amplification, six deletions were found in patients and three in controls (p = 0.31), whereas one duplication was found in patients and three in controls (p = 0.63). Analysis of families of two patients and two controls with deletions indicated that the mutations were de novo. In conclusion, there seems to be no significant difference in the frequencies of 15q11.2 CNVs among the controls and patients studied here. Future studies involving a larger number of controls and patients are expected to provide better clarity on the relationship between 15q11.2 CNVs and SZ patients from India.


Assuntos
Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA , Esquizofrenia/genética , Deleção de Sequência , Estudos de Casos e Controles , Humanos , Índia
8.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909440

RESUMO

To identify whether parent-of-origin effects (POE) of the 15q11.2 BP1-BP2 microdeletion are associated with differences in clinical features in individuals inheriting the deletion, we collected 71 individuals reported with phenotypic data and known inheritance from a clinical cohort, a research cohort, the DECIPHER database, and the primary literature. Chi-squared and Mann-Whitney U tests were used to test for differences in specific and grouped clinical symptoms based on parental inheritance and proband gender. Analyses controlled for sibling sets and individuals with additional variants of uncertain significance (VOUS). Among all probands, maternal deletions were associated with macrocephaly (p = 0.016) and autism spectrum disorder (ASD; p = 0.02), while paternal deletions were associated with congenital heart disease (CHD; p = 0.004). Excluding sibling sets, maternal deletions were associated with epilepsy as well as macrocephaly (p < 0.05), while paternal deletions were associated with CHD and abnormal muscular phenotypes (p < 0.05). Excluding sibling sets and probands with an additional VOUS, maternal deletions were associated with epilepsy (p = 0.019) and paternal deletions associated with muscular phenotypes (p = 0.008). Significant gender-based differences were also observed. Our results supported POEs of this deletion and included macrocephaly, epilepsy and ASD in maternal deletions with CHD and abnormal muscular phenotypes seen in paternal deletions.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Criança , Pré-Escolar , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Feminino , Impressão Genômica , Humanos , Masculino , Fenótipo , Fatores Sexuais , Irmãos
9.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207912

RESUMO

The 15q11.2 BP1-BP2 microdeletion (Burnside-Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader-Willi or Angelman syndromes having the larger typical 15q11-q13 type I deletion which includes the 15q11.2 BP1-BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11-q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1-BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader-Willi and Angelman syndromes.


Assuntos
Deficiência Intelectual/tratamento farmacológico , Magnésio/uso terapêutico , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 15/metabolismo , Suplementos Nutricionais , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Magnésio/administração & dosagem
10.
Am J Med Genet A ; 164A(8): 1916-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24715682

RESUMO

15q11.2 deletions flanked by BP1 and BP2 of the Prader-Willi/Angelman syndrome region have recently been linked to a range of neurodevelopment disorders including intellectual disability, speech and language delay, motor delay, autism spectrum disorders, epilepsy, and schizophrenia. Array CGH analysis of 14,605 patients referred for diagnostic cytogenetic testing found that 83 patients (0.57%) carried the 15q11.2(BP1-BP2) deletion. Phenotypic frequencies in the deleted cohort (n = 83) were compared with frequencies in the non-deleted cohort (n = 14,522); developmental delay, motor delay, and speech and language delay were all more prevalent in the deleted cohort. Notably, motor delay was significantly more common (OR = 6.37). These data indicate that developmental delay, motor delay, and speech and language delay are common clinical features associated with this deletion, providing substantial evidence to support this CNV as a susceptibility locus for a spectrum of neurodevelopmental disorders. © 2014 Wiley Periodicals, Inc.


Assuntos
Pontos de Quebra do Cromossomo , Deleção Cromossômica , Cromossomos Humanos Par 15 , Estudos de Associação Genética , Fenótipo , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/genética , Hibridização Genômica Comparativa , Conjuntos de Dados como Assunto , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Pessoa de Meia-Idade , Prevalência , Síndrome , Adulto Jovem
11.
SAGE Open Med Case Rep ; 12: 2050313X241229058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292875

RESUMO

Burnside-Butler syndrome is an inheritable genetic condition characterized by the partial deletion of specific genetic material located on chromosome 15q11. Individuals diagnosed with this particular medical condition display a variety of neuropsychiatric disorders, including psychosis, aggression, mood disorders, anxiety disorders, developmental disorders involving learning difficulties, language delays, autism spectrum disorders, and attention-deficit/hyperactivity disorder. The authors discuss the case of a 51-year-old Caucasian female diagnosed with Burnside-Butler syndrome at 8 years. The article highlights the importance of raising awareness regarding the complex nature and delayed onset of neuropsychiatric symptoms associated with this syndrome. It also emphasizes the need for comprehensive evaluation and multidisciplinary care for individuals affected by this uncommon condition.

12.
Mol Cytogenet ; 17(1): 20, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218907

RESUMO

BACKGROUND: The 15q11.2 BP1-BP2 microdeletion syndrome is associated with developmental delays, language impairments, neurobehavioral disorders, and psychiatric complications. The aim of the present study was to provide prenatal and postnatal clinical data for 16 additional fetuses diagnosed with the 15q11.2 BP1-BP2 microdeletion syndrome in the Chinese population. METHODS: A total of 5,789 pregnancy women that underwent amniocentesis were enrolled in the present study. Both karyotype analysis and chromosomal microarray analysis (CMA) were conducted on these subjects to detect chromosomal abnormalities and copy number variants (CNVs). Whole exome sequencing (WES) was performed to investigate sequence variants in subjects with clinical abnormalities after birth. RESULTS: Sixteen fetuses with 15q11.2 BP1-BP2 microdeletion were identified in the present study, with a detection rate of 0.28% (16/5,789). The 15q11.2 BP1-BP2 microdeletion fragments ranged from 311.8 kb to 849.7 kb, encompassing the NIPA1, NIPA2, CYFIP1, and TUBGCP5 genes. The follow-up results regarding pregnancy outcomes showed that five cases opted for pregnancy termination, while the remaining cases continued with their pregnancies. Subsequent postnatal follow-up indicated that only one case with the 15q11.2 BP1-BP2 microdeletion displayed neurodevelopmental disorders, demonstrating an incomplete penetrance rate of 9.09% (1/11). CONCLUSION: The majority of fetuses with the 15q11.2 microdeletion exhibit typical features during early childhood, indicating a low penetrance and mild impact. Nonetheless, pregnancies involving fetuses with the 15q11.2 microdeletion require thorough prenatal counseling. Additionally, enhanced supervision and extended postnatal monitoring are warranted for those who choose to proceed with their pregnancies.

13.
Biol Psychiatry ; 95(2): 147-160, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661008

RESUMO

BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA
14.
Biol Psychiatry ; 90(5): 307-316, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931204

RESUMO

BACKGROUND: Copy number variations at the 15q11.2 BP1-BP2 locus are present in 0.5%-1.0% of the population, and the deletion is associated with several neurodevelopmental disorders. Previously, we showed a reciprocal effect of 15q11.2 copy number variation on fractional anisotropy, with widespread increases in deletion carriers. We aim to expand these findings using a larger sample of participants (N = 29,166) and higher resolution imaging and by examining the implications for cognitive performance. METHODS: Diffusion tensor imaging measures from participants with no neurological or psychiatric diagnoses were obtained from the UK Biobank database. We compared 15q11.2 BP1-BP2 deletion (n = 102) and duplication (n = 113) carriers to a large cohort of control individuals with no neuropsychiatric copy number variants (n = 28,951). Additionally, we assessed how changes in white matter mediated the association between carrier status and cognitive performance. RESULTS: Deletion carriers showed increases in fractional anisotropy in the internal capsule and cingulum and decreases in the posterior thalamic radiation compared with both duplication carriers and control subjects (who had intermediate values). Compared with control subjects, deletion carriers had lower scores across cognitive tasks, which were partly influenced by white matter. Reduced fractional anisotropy in the posterior thalamic radiation partially contributed to worse cognitive performance in deletion carriers. CONCLUSIONS: These results, together with our previous findings, provide convergent evidence for an effect of 15q11.2 BP1-BP2 on white matter microstructure, this being more pronounced in deletion carriers. Additionally, changes in white matter were found to partially mediate cognitive ability in deletion carriers, providing a link between white matter changes in 15q11.2 BP1-BP2 carriers and cognitive function.


Assuntos
Variações do Número de Cópias de DNA , Substância Branca , Bancos de Espécimes Biológicos , Cognição , Imagem de Tensor de Difusão , Humanos , Reino Unido , Substância Branca/diagnóstico por imagem
15.
Diagnostics (Basel) ; 11(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921555

RESUMO

The 15q11.2 breakpoint (BP) 1-BP2 deletion syndrome is emerging as the most frequent pathogenic copy number variation in humans related to neurodevelopmental diseases, with changes in cognition, behavior, and brain morphology. Previous publications have reported that patients with 15q11.2 BP1-BP2 deletion showed intellectual disability (ID), speech impairment, developmental delay (DD), and/or behavioral problems. We describe three new cases, aged 3 or 6 years old and belonging to three unrelated Korean families, with a 350-kb 15q11.2 BP1-BP2 deletion of four highly conserved genes, namely, the TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. All of our cases presented with global DD and/or ID, and the severity ranged from mild to severe, but common facial dysmorphism and congenital malformations in previous reports were not characteristic. The 15q11.2 BP1-BP2 deletion was inherited from an unaffected parent in all cases. Our three cases, together with previous findings from the literature review, confirm some of the features earlier reported to be associated with 15q11.2 BP1-BP2 deletion and help to further delineate the phenotype associated with 15q11.2 deletion. Identification of more cases with 15q11.2 BP1-BP2 deletion will allow us to obtain a better understanding of the clinical phenotypes. Further explanation of the functions of the genes within the 15q11.2 BP1-BP2 region is required to resolve the pathogenic effects on neurodevelopment.

16.
Front Med (Lausanne) ; 8: 754521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888324

RESUMO

Prenatal genetic counseling of fetuses diagnosed with 15q11.2 copy number variants (CNVs) involving the BP1-BP2 region is difficult due to limited information and controversial opinion on prognosis. In total, we collected the data of 36 pregnant women who underwent prenatal microarray analysis from 2010 to 2017 and were assessed at National Taiwan University Hospital. Comparison of the maternal characteristics, prenatal ultrasound findings, and postnatal outcomes among the different cases involving the 15q11.2 BP1-BP2 region were presented. Out of the 36 fetuses diagnosed with CNVs involving the BP1-BP2 region, five were diagnosed with microduplications and 31 with microdeletions. Among the participants, 10 pregnant women received termination of pregnancy and 26 gave birth to healthy individuals (27 babies in total). The prognoses of 15q11.2 CNVs were controversial and recent studies have revealed its low pathogenicity. In our study, the prenatal abnormal ultrasound findings were recorded in 12 participants and were associated with 15q11.2 deletions. No obvious developmental delay or neurological disorders were detected in early childhood.

17.
Genes (Basel) ; 12(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680874

RESUMO

The copy number variation (CNV) of 15q11.2, an emerging and common condition observed during prenatal counseling, is encompassed by four highly conserved and non-imprinted genes-TUBGCP5, CYFIP1, NIPA1, and NIPA2-which are reportedly related to developmental delays or general behavioral problems. We retrospectively analyzed 1337 samples from genetic amniocentesis for fetal CNV using microarray-based comparative genomic hybridization analysis between January 2014 and December 2019. 15q11.2 CNV showed a prevalence of 1.5% (21/1337). Separately, 0.7% was noted for 15q11.2 BP1-BP2 microdeletion and 0.8% for 15q11.2 microduplication. Compared to the normal array group, the 15q11.2 BP1-BP2 microdeletion group had more cases of neonatal intensive care unit transfer, an Apgar score of <7 at 1 min, and neonatal death. Additionally, the group was symptomatic with developmental delays and had more infantile deaths related to congenital heart disease (CHD). Our study makes a novel contribution to the literature by exploring the differences in the adverse perinatal outcomes and early life conditions between the 15q11.2 CNV and normal array groups. Parent-origin gender-based differences may help in the prognosis of the fetal phenotype; development levels should be followed up in the long term and echocardiography should be offered prenatally and postnatally for the prevention of a delayed diagnosis of CHD.


Assuntos
Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Amniocentese , Proteínas de Transporte de Cátions/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Hibridização Genômica Comparativa , Feminino , Feto , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/mortalidade , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Morte Perinatal , Fenótipo , Gravidez , Prognóstico
18.
J Clin Med ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796639

RESUMO

Copy number variations of the 15q11.2 region at breakpoints 1-2 (BP1-BP2) have been associated with variable phenotypes and low penetrance. Detection of such variations in the prenatal setting can result in significant parental anxiety. The clinical significance of pre- and postnatally detected 15q11.2 BP1-BP2 deletions and duplications was assessed. Of 11,004 chromosomal microarray tests performed in a single referral lab (7596 prenatal, 3408 postnatal), deletions were detected in 66 cases: 39 in prenatal tests (0.51%) and 27 in postnatal tests (0.79%). Duplications were detected in 94 cases: 62 prenatal tests (0.82%) and 32 postnatal tests (0.94%). The prevalence of deletions and duplications among clinically indicated prenatal tests (0.57% and 0.9%, respectively) did not differ significantly in comparison to unindicated tests (0.49% and 0.78%, respectively). The prevalence of deletions and duplications among postnatal tests performed for clinical indications was similar to the prevalence in healthy individuals (0.73% and 1% vs. 0.98% and 0.74%, respectively). The calculated penetrance of deletions and duplications over the background risk was 2.18% and 1.16%, respectively. We conclude that the pathogenicity of 15q11.2 BP1-BP2 deletions and duplications is low. Opting out the report of these copy number variations to both clinicians and couples should be considered.

19.
Biol Psychiatry ; 85(7): 563-572, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583851

RESUMO

BACKGROUND: The 15q11.2 BP1-BP2 cytogenetic region has been associated with learning and motor delays, autism, and schizophrenia. This region includes a gene that codes for the cytoplasmic FMR1 interacting protein 1 (CYFIP1). The CYFIP1 protein is involved in actin cytoskeletal dynamics and interacts with the fragile X mental retardation protein. Absence of fragile X mental retardation protein causes fragile X syndrome. Because abnormal white matter microstructure has been reported in both fragile X syndrome and psychiatric disorders, we looked at the impact of 15q11.2 BP1-BP2 dosage on white matter microstructure. METHODS: Combining a brain-wide voxel-based approach and a regional-based analysis, we analyzed diffusion tensor imaging data from healthy individuals with the deletion (n = 30), healthy individuals with the reciprocal duplication (n = 27), and IQ-matched control subjects with no large copy number variants (n = 19), recruited from a large genotyped population sample. RESULTS: We found global mirror effects (deletion > control > duplication) on fractional anisotropy. The deletion group showed widespread increased fractional anisotropy when compared with duplication. Regional analyses revealed a greater effect size in the posterior limb of the internal capsule and a tendency for decreased fractional anisotropy in duplication. CONCLUSIONS: These results show a reciprocal effect of 15q11.2 BP1-BP2 on white matter microstructure, suggesting that reciprocal chromosomal imbalances may lead to opposite changes in brain structure. Findings in the deletion overlap with previous white matter differences reported in fragile X syndrome patients, suggesting common pathogenic mechanisms derived from disruptions of cytoplasmic CYFIP1-fragile X mental retardation protein complexes. Our data begin to identify specific components of the 15q11.2 BP1-BP2 phenotype and neurobiological mechanisms of potential relevance to the increased risk for disorder.


Assuntos
Aberrações Cromossômicas , Deleção Cromossômica , Duplicação Cromossômica , Variações do Número de Cópias de DNA , Deficiência Intelectual , Substância Branca/patologia , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Cromossomos Humanos Par 15 , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Adulto Jovem
20.
Taiwan J Obstet Gynecol ; 57(5): 730-733, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30342661

RESUMO

OBJECTIVE: We present prenatal diagnosis of a 15q11.2 (BP1-BP2) microdeletion encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in a fetus with ventriculomegaly, microcephaly and intrauterine growth restriction (IUGR) on prenatal ultrasound. CASE REPORT: A 30-year-old, gravida 3, para 2, woman was referred to the hospital for amniocentesis because of fetal ventriculomegaly on prenatal ultrasound. Her husband was 31 years old. The couple had two healthy daughters, and there was no family history of mental disorders and congenital malformations. Amniocentesis revealed a karyotype of 46,XX. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed a 451.89-kb 15q11.2 microdeletion or arr 15q11.2 (22,765,628-23,217,514) × 1.0 [GRCh37 (hg19)] encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1. The parental karyotypes were normal. aCGH analysis on the DNAs extracted from parental bloods revealed a 402-kb 15q11.2 microdeletion or arr 15q11.2 (22,815,577-23,217,514) × 1.0 (hg19) encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in the phenotypically normal father. The mother did not have any genomic imbalance. Level II ultrasound at 21 weeks of gestation revealed microcephaly and IUGR. The parents elected to terminate the pregnancy at 22 weeks of gestation, and a female fetus was delivered with a body weight of 448 g (10th centile) and a body length of 26 cm (3rd-10th centile) but no gross abnormalities. CONCLUSION: Fetuses with a 15q11.2 (BP1-BP2) microdeletion may present ventriculomegaly, microcephaly and IUGR on prenatal ultrasound, and aCGH is helpful for prenatal diagnosis under such a circumstance.


Assuntos
Deleção Cromossômica , Retardo do Crescimento Fetal/genética , Hidrocefalia/diagnóstico por imagem , Deficiência Intelectual/genética , Microcefalia/genética , Diagnóstico Pré-Natal/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Amniocentese , Proteínas de Transporte de Cátions , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Feminino , Humanos , Cariotipagem , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Gravidez , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA