Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167070

RESUMO

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Assuntos
Axônios/metabolismo , Estresse do Retículo Endoplasmático , Receptores Odorantes , Animais , Camundongos , Bulbo Olfatório , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Fatores de Transcrição/metabolismo
2.
Cell ; 184(9): 2471-2486.e20, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33878291

RESUMO

Metastasis has been considered as the terminal step of tumor progression. However, recent genomic studies suggest that many metastases are initiated by further spread of other metastases. Nevertheless, the corresponding pre-clinical models are lacking, and underlying mechanisms are elusive. Using several approaches, including parabiosis and an evolving barcode system, we demonstrated that the bone microenvironment facilitates breast and prostate cancer cells to further metastasize and establish multi-organ secondary metastases. We uncovered that this metastasis-promoting effect is driven by epigenetic reprogramming that confers stem cell-like properties on cancer cells disseminated from bone lesions. Furthermore, we discovered that enhanced EZH2 activity mediates the increased stemness and metastasis capacity. The same findings also apply to single cell-derived populations, indicating mechanisms distinct from clonal selection. Taken together, our work revealed an unappreciated role of the bone microenvironment in metastasis evolution and elucidated an epigenomic reprogramming process driving terminal-stage, multi-organ metastases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Metástase Neoplásica , Neoplasias da Próstata/patologia , Microambiente Tumoral , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell ; 175(4): 1141-1155.e16, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343902

RESUMO

CRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate >100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzed multiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional protein-level phenotyping of 100s of genes with single-cell resolution.


Assuntos
Sistemas CRISPR-Cas , Citometria de Fluxo/métodos , Genômica/métodos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Animais , Epitopos/química , Epitopos/classificação , Epitopos/genética , Células HEK293 , Humanos , Imunofenotipagem/métodos , Células Jurkat , Camundongos Endogâmicos BALB C , Proteoma/química , Proteoma/classificação , Proteoma/genética , Células THP-1
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39041198

RESUMO

Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.


Assuntos
Código de Barras de DNA Taxonômico , Aptidão Genética , Código de Barras de DNA Taxonômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Viés
5.
EMBO Rep ; 24(9): e57413, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37470283

RESUMO

Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.


Assuntos
Leishmania , Humanos , Leishmania/genética , Antimônio , Cromossomos , Aneuploidia
6.
Proc Natl Acad Sci U S A ; 119(44): e2200944119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288285

RESUMO

Neuron-immune interaction through secreted factors contributes significantly to the complex microenvironment in the central nervous system that could alter cell functionalities and fates in both physiological and pathological conditions, which remains poorly characterized at the single-cell level. Herein, using a spatially patterned antibody barcode microchip, we realized the mapping of 12 different secretomes, covering cytokines, neurotrophic factors (NFs), and neuron-derived exosomes (NDEs) from high-throughput, paired single cells (≥ 600) simultaneously under normal conditions and an Alzheimer's disease (AD) model induced with amyloid beta protein 1-42 (Aß1-42). We applied the platform to analyze the secretion profiles from paired neuron-macrophage and neuron-microglia single cells with human cell lines. We found that pairwise neuron-macrophage interaction would trigger immune responses and attenuate neuron cells' secretion, while neuron-microglia interaction generally results in opposite outcomes in secretion. When neuron cells are induced with Aß1-42 protein into the AD model, both neuron-macrophage and neuron-microglia interactions lead to increased cytokines and NDEs and decreased NFs. Further analysis of AD patients' serum showed that NDEs were significantly higher in patients' samples than in the control group, validating our observation from the interaction assay. Furthermore, we resolved previously undifferentiated heterogeneity underlying the secretions from single-neuron cells. We found that the NDE and NF secretion was less dependent on the paracrine signaling between one another and that secretions from neuron cells would attenuate after differentiation with Aß1-42. This study demonstrates the mapping of the different secretomes from paired neuron-immune single cells, providing avenues for understanding how neurons and immune cells interact through the complex secretome network.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Secretoma , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Microglia/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Fatores de Crescimento Neural/metabolismo
7.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778277

RESUMO

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Assuntos
Acer , Código de Barras de DNA Taxonômico , DNA de Plantas , DNA Ribossômico , Filogenia , Acer/genética , Código de Barras de DNA Taxonômico/métodos , DNA Ribossômico/genética , DNA de Plantas/genética , Plastídeos/genética , Especificidade da Espécie , Núcleo Celular/genética
8.
BMC Plant Biol ; 24(1): 70, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263006

RESUMO

BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.


Assuntos
Apiaceae , Sanicula , Filogenia , Plastídeos , Cloroplastos
9.
Small ; 20(44): e2402890, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38982951

RESUMO

Development of luminescent segmented heterostructures featuring multiple spatial-responsive blocks is important to achieve miniaturized photonic barcodes toward anti-counterfeit applications. Unfortunately, dynamic manipulation of the spatial color at micro/nanoscale still remains a formidable challenge. Here, a straightforward strategy is proposed to construct spatially varied heterostructures through amplifying the conformation-driven response in flexible lanthanide-metal-organic frameworks (Ln-MOFs), where the thermally induced minor conformational changes in organic donors dramatically modulate the photoluminescence of Ln acceptors. Notably, compositionally and structurally distinct heterostructures (1D and 2D) are further constructed through epitaxial growth of multiple responsive MOF blocks benefiting from the isomorphous Ln-MOF structures. The thermally controlled emissive colors with distinguishable spectra carry the fingerprint information of a specific heterostructure, thus allowing for the effective construction of smart photonic barcodes with spatially responsive characteristics. The results will deepen the understanding of the conformation-driven responsive mechanism and also provide guidance to fabricate complex stimuli-responsive hierarchical microstructures for advanced optical recording and high-security labels.

10.
Microb Pathog ; 193: 106756, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901752

RESUMO

Eucalyptus spp. are undoubtedly one of the most favored plantation trees globally. Accurately identifying Eucalyptus pathogens is therefore crucial for timely disease prevention and control. Recently, symptoms of a leaf blight disease were observed on Eucalyptus trees in plantations at Jhajjar and Karnal in the state of Haryana, northern India. Asexual morphs resembling the features of the Botryosphaeriaceae were consistently isolated from the symptomatic leaves. Morphological features coupled with DNA sequence analysis confirmed a novel species, which is described and illustrated here as Botryosphaeria eucalypti sp. nov. Conidia of the new taxon are longer and wider than those of its phylogenetic neighbors. A distinct phylogenetic position for the new taxon was established through combined analysis of the internal transcribed spacer (ITS), partial translation elongation factor-1α (tef1) and partial ß-tubulin (tub2) regions. Recombination analysis provided additional support for the new species hypothesis. The pathogenicity of the novel species was proved on Eucalyptus leaves, and Koch's postulates were fulfilled. The discovery of new Botryosphaeria species is important because it will help in understanding the species diversity, host range, possible threats and disease control in the long run.


Assuntos
Ascomicetos , DNA Fúngico , Eucalyptus , Filogenia , Doenças das Plantas , Folhas de Planta , Análise de Sequência de DNA , Tubulina (Proteína) , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , Folhas de Planta/microbiologia , Índia , DNA Fúngico/genética , Tubulina (Proteína)/genética , Fator 1 de Elongação de Peptídeos/genética , Esporos Fúngicos/genética , DNA Espaçador Ribossômico/genética
11.
Stud Mycol ; 107: 1-66, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38600958

RESUMO

The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.

12.
Bull Entomol Res ; 114(3): 359-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629305

RESUMO

The eggplant fruit and shoot borer (EFSB) is a devastating pest of eggplants (Solanum aethiopicum L. and Solanum melongena L.) in Ghana, causing significant economic losses. Although initially thought to be the Leucinodes orbonalis Guenee species found in Asia, recent European and Mediterranean Plant Protection Organization reports suggest its absence in Africa. However, eight Leucinodes species have been recently described in Africa, including two new species, Leucinodes africensis sp. n. and Leucinodes laisalis Walker, which were intercepted in eggplant fruits exported from Ghana to the United Kingdom. Despite the reported absence of L. orbonalis in Africa, it remains on the pest list of Ghana as a species known to attack eggplants. To accurately determine the identity of the EFSB complex occurring on eggplant in Southern Ghana, molecular and morphological taxonomic tools were employed, and adult male populations were monitored in on-farm conditions. Our results revealed the presence of two EFSB species, L. africensis and L. laisalis, in the shoot and fruits of eggplants, with L. africensis being the dominant species and widely distributed in Southern Ghana. Notably, L. africensis males were attracted to the pheromone lure of L. orbonalis despite the two species being biologically distinct. This study provides crucial information on correctly identifying the EFSB species attacking eggplants in Southern Ghana and has significant implications for developing management interventions against these pests and their effects on international eggplant trade.


Assuntos
Mariposas , Solanum melongena , Solanum , Animais , Gana , Mariposas/fisiologia , Masculino , Solanum melongena/parasitologia
13.
Exp Appl Acarol ; 92(3): 547-554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386133

RESUMO

Forty-five tick species have been recorded in Kazakhstan. However, their genetic diversity and evolutionary relationships, particularly when compared to ticks in neighbouring countries, remain unclear. In the present study, 148 mitochondrial cytochrome c oxidase subunit I (COI) sequence data from our laboratory and NCBI (National Center for Biotechnology Information; https://www.ncbi.nlm.nih.gov/ ) data were used to address this knowledge gap. Phylogenetic analyses showed that i) Hyalomma anatolicum anatolicum (Koch, 1844) ticks from Jambyl Oblast (southeastern Kazakhstan) and Gansu Province (northwestern China) constituted a newly deviated clade; and ii) Dermacentor reticulatus (Fabricius, 1974) ticks from South Kazakhstan Oblast were closer to those in Romania and Turkey. The network diagram of haplotypes showed that i) the H-1 and H-2 haplotypes of Dermacentor marginatus (Sulzer, 1776) ticks from Zhetisu and Almaty were all newly evolved; and ii) the H-3 haplotypes of Haemaphysalis erinacei (Pavesi, 1884) from Almaty Oblast and Xinjiang Uygur Autonomous Region (northwestern China) were evolved from the H-1 haplotype from Italy. In the future, more COI data from different tick species, especially from Kazakhstan and neighbouring countries, should be employed in the field of tick DNA barcoding.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Ixodidae , Filogenia , Animais , Cazaquistão , Ixodidae/genética , Ixodidae/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Proteínas de Artrópodes/genética
14.
J Nematol ; 56(1): 20240040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39444847

RESUMO

A new species of the genus Paractinolaimus isolated from the bark of a dead red pine tree was characterized using morphometric data and molecular DNA barcodes. Paractinolaimus uljinensis n. sp. was characterized by its medium sized body 2.50 to 2.98 mm long; lip region truncate, angular and offset by a depression; odontostyle 23.5 to 27.0 µm long; basal shield of pharynx present; vulval opening wide and longitudinal, positioned slightly anteriorly (V = 42.5-47.7); several advulval papillae; female tail long and filiform (324.0-435.0 µm long, c' = 10.1-14.2); a clearly visible copulatory hump; spicules 60.0 to 70.5 µm long; 12 to 15 (mostly 12-14) large contiguous ventromedian supplements, and male tail conoid to broadly rounded. The new species was morphologically compared with P. intermedius, P. sahandi, P. decraemerae, P. acutus, P. macrolaimus, and P. tuberculatus. The phylogenetic relationships among species were reconstructed using 18S- and 28S-rRNA gene sequences. The phylogenies showed well-supported sister relations of Paractinolaimus uljinensis n. sp. with P. sahandi, P. macrolaimus, and P. decraemerae. In addition, the ITS-rRNA gene sequences of Paractinolaimus uljinensis n. sp. were supplied, representing the first characterization of the gene for the genus.

15.
J Nematol ; 56(1): 20240028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39351291

RESUMO

Mesodorylaimus pini n. sp., a new species isolated from the bark and cambium layer of a dead black pine tree is characterized herein using integrative taxonomy, considering both morphological and molecular phylogenetic analyses of the 18S- and 28S-rRNA genes. Mesodorylaimus pini n. sp. is characterized by having a medium-sized body 1.50-1.89 mm long; lip region angular and offset by a depression; a relatively long odontostyle (17.0-19.0 µm); vulval opening a transverse slit, positioned slightly posteriorly; pars refringens vaginae with two elongated drop-shaped to spindle-shaped sclerotizations; an intestine-prerectum junction with a long anteriorly directed conical or tongue-like projection; a relatively long female tail (115-187 µm); spicules 48.0-57.0 µm long; and regularly spaced 7-8 ventromedian supplements. It is closest to M. subtilis, especially in having similar body length and number of ventromedian supplements but can be differentiated from M. subtilis by the longer odontostyle, tongue-like projection, and longer spicules. The phylogenies based on the 18S- and 28S-rRNA sequences showed a well-supported sister relation of M. pini n. sp. with M. subtilis, M. japonicus, M. bastiani, M. pseudobastiani, Calcaridorylaimus castaneae, C. heynsi, and other member species of the group.

16.
J Mol Evol ; 91(3): 293-310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237236

RESUMO

The phrase "survival of the fittest" has become an iconic descriptor of how natural selection works. And yet, precisely measuring fitness, even for single-celled microbial populations growing in controlled laboratory conditions, remains a challenge. While numerous methods exist to perform these measurements, including recently developed methods utilizing DNA barcodes, all methods are limited in their precision to differentiate strains with small fitness differences. In this study, we rule out some major sources of imprecision, but still find that fitness measurements vary substantially from replicate to replicate. Our data suggest that very subtle and difficult to avoid environmental differences between replicates create systematic variation across fitness measurements. We conclude by discussing how fitness measurements should be interpreted given their extreme environment dependence. This work was inspired by the scientific community who followed us and gave us tips as we live tweeted a high-replicate fitness measurement experiment at #1BigBatch.


Assuntos
Aptidão Genética , Seleção Genética
17.
BMC Plant Biol ; 23(1): 193, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041463

RESUMO

BACKGROUND: Wheat is a major cereal that can narrow the gap between the increasing human population and food production. In this connection, assessing genetic diversity and conserving wheat genetic resources for future exploitation is very important for breeding new cultivars that may withstand the expected climate change. The current study evaluates the genetic diversity in selected wheat cultivars using ISSR and SCoT markers, the rbcL and matK chloroplast DNA barcoding, and grain surface sculpture characteristics. We anticipate that these objectives may prioritize using the selected cultivars to improve wheat production. The selected collection of cultivars may lead to the identification of cultivars adapted to a broad spectrum of climatic environments. RESULTS: Multivariate clustering analyses of the ISSR and SCoT DNA fingerprinting polymorphism grouped three Egyptian cultivars with cultivar El-Nielain from Sudan, cultivar Aguilal from Morocco, and cultivar Attila from Mexico. In the other group, cultivar Cook from Australia and cultivar Chinese-166 were differentiated from four other cultivars: cultivar Cham-10 from Syria, cultivar Seri-82 from Mexico, cultivar Inqalab-91 from Pakistan, and cultivar Sonalika from India. In the PCA analysis, the Egyptian cultivars were distinct from the other studied cultivars. The rbcL and matK sequence variation analysis indicated similarities between Egyptian cultivars and cultivar Cham-10 from Syria and cultivar Inqalab-91 from Pakistan, whereas cultivar Attila from Mexico was distinguished from all other cultivars. Combining the data of ISSR and SCoT with the rbcL and matK results retained the close resemblance among the two Egyptian cultivars EGY1: Gemmeiza-9 and EGY3: Sakha-93, and the Moroccan cultivar Aguilal, and the Sudanese cultivar El-Nielain and between Seri-82, Inqalab-91, and Sonalika cultivars. The analysis of all data distinguished cultivar Cham-10 from Syria from all other cultivars, and the analysis of grain traits indicated a close resemblance between cv. Cham-10 from and the two Egyptian cultivars Gemmeiza-9 and Sakha-93. CONCLUSIONS: The analysis of rbcL and matK chloroplast DNA barcoding agrees with the ISSR and the SCoT markers in supporting the close resemblance between the Egyptian cultivars, particularly Gemmeiza-9 and Sakha-93. The ISSR and SCoT data analyses significantly expressed high differentiation levels among the examined cultivars. Cultivars with closer resemblance may be recommended for breeding new wheat cultivars adapted to various climatic environments.


Assuntos
DNA de Cloroplastos , Triticum , Humanos , Grão Comestível , Melhoramento Vegetal , Polimorfismo Genético
18.
Mol Ecol ; 32(23): 6147-6160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271787

RESUMO

To help address the underrepresentation of arthropods and Asian biodiversity from climate-change assessments, we carried out year-long, weekly sampling campaigns with Malaise traps at different elevations and latitudes in Gaoligongshan National Park in southwestern China. From these 623 samples, we barcoded 10,524 beetles and compared scenarios of climate-change-induced biodiversity loss, by designating seasonal, elevational, and latitudinal subsets of beetles as communities that plausibly could go extinct as a group, which we call "loss sets". The availability of a published mitochondrial-genome-based phylogeny of the Coleoptera allowed us to compare the loss of species diversity with and without accounting for phylogenetic relatedness. We hypothesised that phylogenetic relatedness would mitigate extinction, since the extinction of any loss set would result in the disappearance of all its species but only part of its evolutionary history, which is still extant in the remaining loss sets. We found different patterns of community clustering by season and latitude, depending on whether phylogenetic information was incorporated. However, accounting for phylogeny only slightly mitigated the amount of biodiversity loss under climate change scenarios, against our expectations: there is no phylogenetic "escape clause" for biodiversity conservation. We achieve the same results whether phylogenetic information was derived from the mitogenome phylogeny or from a de novo barcode-gene tree. We encourage interested researchers to use this data set to study lineage-specific community assembly patterns in conjunction with life-history traits and environmental covariates.


Assuntos
Artrópodes , Besouros , Animais , Filogenia , Biodiversidade , Insetos , Evolução Biológica , Besouros/genética
19.
Plant Cell Environ ; 46(3): 865-888, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479703

RESUMO

Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35°C) or acute (40°C) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we presented a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Termotolerância , Chlamydomonas reinhardtii/metabolismo , Termotolerância/genética , Fotossíntese/genética , Carbono/metabolismo
20.
Mol Phylogenet Evol ; 184: 107759, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36921697

RESUMO

Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to fully justify such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.


Assuntos
Dípteros , Genoma Mitocondrial , Animais , Filogenia , Dípteros/genética , Teorema de Bayes , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA