RESUMO
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Assuntos
Angiopoietina-2 , Barreira Hematorretiniana , Caderinas , Proliferação de Células , Fator A de Crescimento do Endotélio Vascular , Animais , Bovinos , Inibidores da Angiogênese/farmacologia , Angiopoietina-2/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Claudina-1/metabolismo , Impedância Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/citologia , Fragmentos de Peptídeos , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The VEGF-A-induced functional impairment of the barrier formed by retinal endothelial cells (REC) can be prevented and even - at least temporarily - reverted by trapping the growth factor in a complex with a VEGF-binding protein or by inhibiting the activity of the VEGF receptor 2 (VEGFR2). In an approach to emulate the clinically relevant situation of constant exposure to effectors, we investigated (1) whether prolonged exposure to VEGF-A165 for up to six days results in a different type of disturbance of the barrier formed by immortalized bovine REC (iBREC) and (2) whether alterations of the barrier induced by VEGF-A165 can indeed be sustainably reverted by subsequent treatment with the VEGF-A-binding proteins ranibizumab or brolucizumab. As a measure of barrier integrity, the cell index (CI) of iBREC cultivated on gold electrodes was monitored continuously. CI values declined shortly after addition of the growth factor and then remained low for more than six days over which considerable amounts of both extra- and intracellular VEGF-A were measured. Interestingly, the specific VEGFR2 inhibitor nintedanib normalized the lowered CI when added to iBREC pre-treated with VEGF-A165 for one day, but failed to do so when cells had been exposed to the growth factor for six days. Expression of the tight junction (TJ) protein claudin-5 was unchanged early after addition of VEGF-A165 but higher after prolonged treatment, whereas decreased amounts of the TJ-protein claudin-1 remained low, and increased expression of the plasmalemma vesicle-associated protein (PLVAP) remained high during further exposure. After two days, the characteristic even plasma membrane stainings of claudin-1 or claudin-5 appeared weaker or disordered, respectively. After six days the subcellular localization of claudin-5 was similar to that of control cells again, but claudin-1 remained relocated from the plasma membrane. To counteract these effects of VEGF-A165, brolucizumab or ranibizumab was added after one day, resulting in recovery of the then lowered CI to normal values within a few hours. However, despite the VEGF antagonist being present, the CI declined again two days later to values that were just slightly higher than without VEGF inhibition during further assessment for several days. At this stage, neither the supernatants nor whole cell extracts from iBREC treated with VEGF-A165 and its antagonists contained significant amounts of free VEGF-A. Treatment of VEGF-A165-challenged iBREC with ranibizumab or brolucizumab normalized expression of claudin-1 and claudin-5, but not completely that of PLVAP. Interestingly, the characteristic VEGF-A165-induced relocalization of claudin-1 from the plasma membrane was reverted within one day by any of the VEGF antagonists, but reappeared despite their presence after further exposure for several days. Taken together, barrier dysfunction induced by VEGF-A165 results from deregulated para- and transcellular flow but the precise nature or magnitude of underlying changes on a molecular level clearly depend on the time of exposure, evolving into a stage of VEGF-A165-independent barrier impairment. These findings also provide a plausible explanation for resistance to treatment with VEGF-A antagonists frequently observed in clinical practice.
Assuntos
Células Endoteliais/efeitos dos fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Vasos Retinianos/citologia , Junções Íntimas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Transporte Biológico , Western Blotting , Bovinos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Claudina-1/metabolismo , Claudina-5/metabolismo , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Ranibizumab/uso terapêuticoRESUMO
Speciation underlies the generation of novel biodiversity. Yet, there is much to learn about how natural selection shapes genomes during speciation. Selection is assumed to act against gene flow at barrier loci, promoting reproductive isolation. However, evidence for gene flow and selection is often indirect and we know very little about the temporal stability of barrier loci. Here we utilize haplodiploidy to identify candidate male barrier loci in hybrids between two wood ant species. As ant males are haploid, they are expected to reveal recessive barrier loci, which can be masked in diploid females if heterozygous. We then test for barrier stability in a sample collected 10 years later and use survival analysis to provide a direct measure of natural selection acting on candidate male barrier loci. We find multiple candidate male barrier loci scattered throughout the genome. Surprisingly, a proportion of them are not stable after 10 years, natural selection apparently switching from acting against to favouring introgression in the later sample. Instability of the barrier effect and natural selection for introgressed alleles could be due to environment-dependent selection, emphasizing the need to consider temporal variation in the strength of natural selection and the stability of the barrier effect at putative barrier loci in future speciation work.
Assuntos
Formigas , Animais , Formigas/genética , Feminino , Fluxo Gênico , Especiação Genética , Genética Populacional , Masculino , Isolamento Reprodutivo , Seleção GenéticaRESUMO
BACKGROUND: Astrocytes (AC) are essential for brain homeostasis. Much data suggests that AC support and protect the vascular endothelium, but increasing evidence indicates that during injury conditions they may lose their supportive role resulting in endothelial cell activation and BBB disturbance. Understanding the triggers that flip this switch would provide invaluable information for designing new targets to modulate the brain vascular compartment. Hypoxia-inducible factor-1 (HIF-1) has long been assumed to be a culprit for barrier dysfunction as a number of its target genes are potent angiogenic factors. Indeed AC themselves, reservoirs of an array of different growth factors and molecules, are frequently assumed to be the source of such molecules although direct supporting evidence is yet to be published. Being well known reservoirs of HIF-1 dependent angiogenic molecules, we asked if AC HIF-1 dependent paracrine signaling drives brain EC disturbance during hypoxia. METHODS: First we collected conditioned media from control and siRNA-mediated HIF-1 knockdown primary rat AC that had been exposed to normoxic or hypoxic conditions. The conditioned media was then used to culture normoxic and hypoxic (1% O2) rat brain microvascular EC (RBE4) for 6 and 24 h. Various activation parameters including migration, proliferation and cell cycling were assessed and compared to untreated controls. In addition, tight junction localization and barrier stability per se (via permeability assay) was evaluated. RESULTS: AC conditioned media maintained both normoxic and hypoxic EC in a quiescent state by suppressing EC metabolic activity and proliferation. By FACs we observed reduced cell cycling with an increased number of cells in G0 phase and reduced cell numbers in M phase compared to controls. EC migration was also blocked by AC conditioned media and in correlation hypoxic tight junction organization and barrier functionality was improved. Surprisingly however, AC HIF-1 deletion did not impact EC responses or barrier stability during hypoxia. CONCLUSIONS: This study demonstrates that AC HIF-1 dependent paracrine signaling does not contribute to AC modulation of EC barrier function under normoxic or hypoxic conditions. Thus other cell types likely mediate EC permeability in stress scenarios. Our data does however highlight the continuous protective effect of AC on the barrier endothelium. Exploring these protective mechanisms in more detail will provide essential insight into ways to prevent barrier disturbance during injury and disease.
Assuntos
Astrócitos/metabolismo , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , RNA Interferente Pequeno , Ratos , TransfecçãoRESUMO
Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.
Assuntos
Astrócitos , Glutationa , Barreira Hematoencefálica , Células Endoteliais , Junções ÍntimasRESUMO
Oral mucositis, a painful and debilitating ulcerative wound condition, is a frequently occurring complication following chemo- and/or radiotherapy. While the current standards of therapy (e.g., gels and mouth rinses) provide temporary relief, there is still an unmet need for a robust, long acting barrier that can provide lubricating protection in oral wounds, thereby enhancing the wound healing response. It is proposed that an affinity based layer-by-layer (LBL) self-assembly that can be administered as a series of mouth rinses could permit the formation of protective barriers, providing a modular approach to regenerative oral therapy. In this study, biotinylated poly(acrylic acid) was synthesized for developing LBL assemblies using biotin-streptavidin affinity linkages. To explore the ability of developed LBL assemblies to potentially resist the harsh intraoral environment, in vitro chemical and ex vivo mechanical tests were performed. The stability results demonstrated significant LBL barrier stability with wear resistance. From statistical analyses, it was deduced that polymer MW and the number of LBL layers contributed significantly to chemical barrier stability. Also, the extent of biotin conjugation played a key role for LBL development and in mechanical barrier stability. Thus, the proposed affinity based LBLs with their excellent barrier properties offer a modular treatment approach in oral mucosal injuries.