Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2320559121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408237

RESUMO

Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.


Assuntos
Carcinoma de Células Escamosas , Transdução de Sinais , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homeostase , Transdução de Sinais/genética , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
2.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575074

RESUMO

Recent evidence has shown that presenilin enhancer 2 (Pen2; Psenen) plays an essential role in corticogenesis by regulating the switch of apical progenitors (APs) to basal progenitors (BPs). The hippocampus is a brain structure required for advanced functions, including spatial navigation, learning and memory. However, it remains unknown whether Pen2 is important for hippocampal morphogenesis. To address this question, we generated Pen2 conditional knockout (cKO) mice, in which Pen2 is inactivated in neural progenitor cells (NPCs) in the hippocampal primordium. We showed that Pen2 cKO mice exhibited hippocampal malformation and decreased population of NPCs in the neuroepithelium of the hippocampus. We found that deletion of Pen2 neither affected the proliferative capability of APs nor the switch of APs to BPs in the hippocampus, and that it caused enhanced transition of APs to neurons. We demonstrated that expression of the Notch1 intracellular domain (N1ICD) significantly increased the population of NPCs in the Pen2 cKO hippocampus. Collectively, this study uncovers a crucial role for Pen2 in the maintenance of NPCs during hippocampal development.


Assuntos
Hipocampo , Neurônios , Animais , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Neurônios/metabolismo , Presenilinas/metabolismo
3.
Development ; 146(3)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30696710

RESUMO

Basal progenitor cells are crucial for the establishment and maintenance of the tracheal epithelium. However, it remains unclear how these progenitor cells are specified during foregut development. Here, we found that ablation of the Wnt chaperone protein Gpr177 (also known as Wntless) in mouse tracheal epithelium causes a significant reduction in the number of basal progenitor cells accompanied by cartilage loss in Shh-Cre;Gpr177loxp/loxp mutants. Consistent with the association between cartilage and basal cell development, Nkx2.1+p63+ basal cells are co-present with cartilage nodules in Shh-Cre;Ctnnb1DM/loxp mutants, which maintain partial cell-cell adhesion but not the transcription regulation function of ß-catenin. More importantly, deletion of Ctnnb1 in the mesenchyme leads to the loss of basal cells and cartilage, concomitant with reduced transcript levels of Fgf10 in Dermo1-Cre;Ctnnb1loxp/loxp mutants. Furthermore, deletion of Fgf receptor 2 (Fgfr2) in the epithelium also leads to significantly reduced numbers of basal cells, supporting the importance of Wnt/Fgf crosstalk in early tracheal development.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Mucosa Respiratória/embriologia , Traqueia/embriologia , Via de Sinalização Wnt/fisiologia , Animais , Fator 10 de Crescimento de Fibroblastos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Mutantes , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Mucosa Respiratória/citologia , Traqueia/citologia , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Mol Cell Biochem ; 471(1-2): 129-142, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504365

RESUMO

Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, ß-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.


Assuntos
Células Epiteliais/patologia , Imidazolidinas/farmacologia , Hiperplasia Prostática/patologia , Receptores Androgênicos/metabolismo , Células Estromais/metabolismo , Propionato de Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Humanos , Masculino , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos
5.
Development ; 143(1): 66-74, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732839

RESUMO

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/embriologia , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Ambystoma mexicanum , Animais , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Monodelphis/embriologia , Neocórtex/citologia , Tartarugas/embriologia , Xenopus laevis
6.
J Cell Physiol ; 233(5): 3855-3866, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28777465

RESUMO

The esophagus is a pivotal organ originating from anterior foregut that links the mouth and stomach. Moreover, its development involves precise regulation of multiple signal molecules and signal transduction pathways. After abnormal regulation of these molecules in the basal cells of the esophagus occurs, multiple diseases, including esophageal atresia with or without tracheoesophageal fistula, Barrett esophagus, gastroesophageal reflux, and eosinophilic esophagitis, will take place as a result. Furthermore, expression changes of signal molecules or signal pathways in basal cells and the microenvironment around basal cells both can initiate the switch of malignant transformation. In this review, we highlight the molecular events underlying the transition of normal development to multiple esophageal diseases. Additionally, the animal models of esophageal development and related diseases, challenges, and strategies are extensively discussed.


Assuntos
Esôfago/metabolismo , Refluxo Gastroesofágico/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Esôfago/patologia , Refluxo Gastroesofágico/patologia , Humanos , Neoplasias/metabolismo , Células-Tronco/metabolismo
7.
Cereb Cortex ; 25(10): 3977-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25452572

RESUMO

Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.


Assuntos
Córtex Cerebral/embriologia , Síndrome de DiGeorge/embriologia , Síndrome de DiGeorge/genética , Microcefalia/genética , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Proteínas Nucleares/fisiologia , Animais , Polaridade Celular , Proliferação de Células/genética , Córtex Cerebral/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Ventrículos Laterais/embriologia , Ventrículos Laterais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Neuroepiteliais/fisiologia , Proteínas Nucleares/genética
8.
Glia ; 63(8): 1303-19, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25808466

RESUMO

Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes.


Assuntos
Evolução Biológica , Córtex Cerebral/fisiologia , Neuroglia/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Humanos , Neuroglia/citologia
9.
Stem Cells ; 31(12): 2767-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23712882

RESUMO

Tissue-specific stem cell (TSC) number is tightly regulated in normal individuals but can change following severe injury. We previously showed that tracheobronchial epithelial TSC number increased after severe naphthalene (NA) injury and then returned to normal. This study focused on the fate of the supernumerary TSC and the signals that regulate TSC pool size. We used the Keratin 5-rTA/Histone 2B:green fluorescent protein (GFP) model to purify basal cells that proliferated infrequently (GFP(bright) ) or frequently (GFP(dim) ) after NA injury. Both populations contained TSC but TSCs were 8.5-fold more abundant in the GFP(bright) population. Interestingly, both populations also contained a unipotential basal progenitor (UPB), a mitotic basal cell subtype whose daughters were terminally differentiated basal cells. The ratio of TSC to UPB was 5:1 in the GFP(bright) population and 1:5 in the GFP(dim) population. These data suggested that TSC proliferation in vivo promoted TSC-to-UPB differentiation. To evaluate this question, we cloned TSC from the GFP(bright) and GFP(dim) populations and passaged the clones seven times. We found that TSC number decreased and UPB number increased at each passage. Reciprocal changes in TSC and UPB frequency were more dramatic in the GFP(dim) lineage. Gene expression analysis showed that ß-catenin and Notch pathway genes were differentially expressed in freshly isolated TSC derived from GFP(bright) and GFP(dim) populations. We conclude that (a) TSC and UPB are members of a single lineage; (b) TSC proliferation in vivo or in vitro promotes TSC-to-UPB differentiation; and (c) an interaction between the ß-catenin and Notch pathways regulates the TSC-to-UPB differentiation process.


Assuntos
Brônquios/citologia , Células-Tronco/citologia , Traqueia/citologia , Animais , Brônquios/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo , Traqueia/metabolismo
10.
Front Cell Dev Biol ; 12: 1410102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175878

RESUMO

Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.

11.
Stem Cell Rev Rep ; 17(3): 703-718, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495975

RESUMO

Slug/Snail2 belongs to the Epithelial-Mesenchymal Transition (EMT)-inducing transcription factors involved in development and diseases. Slug is expressed in adult stem/progenitor cells of several epithelia, making it unique among these transcription factors. To investigate Slug role in human bronchial epithelium progenitors, we studied primary bronchial basal/progenitor cells in an air-liquid interface culture system that allows regenerating a bronchial epithelium. To identify Slug downstream genes we knocked down Slug in basal/progenitor cells from normal subjects and subjects with COPD, a respiratory disease presenting anomalies in the bronchial epithelium and high levels of TGF-ß in the lungs. We show that normal and COPD bronchial basal/progenitors, even when treated with TGF-ß, express both epithelial and mesenchymal markers, and that the epithelial marker E-cadherin is not a target of Slug and, moreover, positively correlates with Slug. We reveal that Slug downstream genes responding to both differentiation and TGF-ß are different in normal and COPD progenitors, with in particular a set of proliferation-related genes that are among the genes repressed downstream of Slug in normal but not COPD. In COPD progenitors at the onset of differentiation in presence of TGF-ß,we show that there is positive correlations between the effect of differentiation and TGF-ß on proliferation-related genes and on Slug protein, and that their expression levels are higher than in normal cells. As well, the expression of Smad3 and ß-Catenin, two molecules from TGF-ßsignaling pathways, are higher in COPD progenitors, and our results indicate that proliferation-related genes and Slug protein are increased by different TGF-ß-induced mechanisms.


Assuntos
Brônquios , Doença Pulmonar Obstrutiva Crônica , Fatores de Transcrição da Família Snail , Células-Tronco , Fator de Crescimento Transformador beta , Adulto , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
12.
Cell Rep ; 30(7): 2170-2179.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075758

RESUMO

circSLC45A4 is the main RNA splice isoform produced from its genetic locus and one of the highest expressed circRNAs in the developing human frontal cortex. Knockdown of this highly conserved circRNA in a human neuroblastoma cell line is sufficient to induce spontaneous neuronal differentiation, measurable by increased expression of neuronal marker genes. Depletion of circSlc45a4 in the developing mouse cortex causes a significant reduction of the basal progenitor pool and increases the expression of neurogenic regulators. Furthermore, knockdown of circSlc45a4a induces a significant depletion of cells in the cortical plate. In addition, deconvolution of the bulk RNA-seq data with the help of single-cell RNA-seq data validates the depletion of basal progenitors and reveals an increase in Cajal-Retzius cells. In summary, we present a detailed study of a highly conserved circular RNA that is necessary to maintain the pool of neural progenitors in vitro and in vivo.


Assuntos
Encéfalo/fisiologia , Perfilação da Expressão Gênica/métodos , Neurônios/metabolismo , RNA Circular/metabolismo , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos
13.
Front Mol Biosci ; 7: 578137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330619

RESUMO

Cortical development is a very complex process in which any temporal or spatial alterations can give rise to a wide range of cortical malformations. Among those malformations, periventricular heterotopia (PH) is characterized by clusters of neurons that do not migrate to the correct place. Cerebral organoids derived from patients with mutations in DCHS1 and FAT4, which have been associated with PH, exhibit higher levels of GNG5 expression in a patient-specific cluster of neurons. Here we investigate the role of GNG5 during the development of the cerebral cortex in mice and human cerebral organoids. GNG5, highly expressed in progenitors and downregulated in neurons, is critical for controlling the number of apical and basal progenitors and neuronal migration. Moreover, forced expression of GNG5 recapitulates some of the alterations observed upon downregulation of Dchs1 and Fat4 in mice and human cerebral organoids derived from DCHS1 and FAT4 patients, suggesting a critical role of GNG5 in cortical development.

14.
Neuron ; 108(6): 1113-1129.e6, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33080227

RESUMO

Evolutionary expansion of the mammalian neocortex (Ncx) has been linked to increased abundance and proliferative capacity of basal progenitors (BPs) in the subventricular zone during development. BP proliferation is governed by both intrinsic and extrinsic signals, several of which have been identified. However, a role of neurotransmitters, a canonical class of extrinsic signaling molecules, in BP proliferation remains to be established. Here, we show that serotonin (5-HT), via its receptor HTR2A, promotes BP proliferation in an evolutionarily relevant manner. HTR2A is not expressed in embryonic mouse Ncx; accordingly, 5-HT does not increase mouse BP proliferation. However, ectopic HTR2A expression can increase mouse BP proliferation. Conversely, CRISPR/Cas9-mediated knockout of endogenous HTR2A in embryonic ferret Ncx reduces BP proliferation. Pharmacological activation of endogenous HTR2A in fetal human Ncx ex vivo increases BP proliferation via HER2/ERK signaling. Hence, 5-HT emerges as an important extrinsic pro-proliferative signal for BPs, which may have contributed to evolutionary Ncx expansion.


Assuntos
Proliferação de Células/fisiologia , Ventrículos Laterais/citologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Furões , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Camundongos , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Receptor 5-HT2A de Serotonina/genética , Serotonina/farmacologia
15.
Mol Neurobiol ; 56(11): 7305-7320, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31020615

RESUMO

Chromatin remodeling factor BAF155 is an important regulator of many biological processes. As a core and scaffold subunit of the BAF (SWI/SNF-like) complex, BAF155 is capable of regulating the stability and function of the BAF complex. The spatiotemporal expression of BAF155 during embryogenesis is essential for various aspects of organogenesis, particularly in the brain development. However, our understanding of the mechanisms that regulate the expression and function of BAF155 is limited. Here, we report that RBM15, a subunit of the m6A methyltransferase complex, interacts with BAF155 mRNA and mediates BAF155 mRNA degradation through the mRNA methylation machinery. Ablation of endogenous RBM15 expression in cultured neuronal cells and in the developing cortex augmented the expression of BAF155. Conversely, RBM15 overexpression decreased BAF155 mRNA and protein levels, and perturbed BAF155 functions in vivo, including repression of BAF155-dependent transcriptional activity and delamination of apical radial glial progenitors as a hallmark of basal radial glial progenitor genesis. Furthermore, we demonstrated that the regulation of BAF155 by RBM15 depends on the activity of the mRNA methylation complex core catalytic subunit METTL3. Altogether, our findings reveal a new regulatory avenue that elucidates how BAF complex subunit stoichiometry and functional modulation are achieved in mammalian cells.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição
16.
Hum Gene Ther ; 29(6): 653-662, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29179571

RESUMO

Cystic fibrosis (CF) lung disease is an ideal candidate for a genetic therapy. It has been shown previously that preconditioning with lysophosphatidylcholine (LPC) prior to lentiviral (LV) vector delivery results in long-term in vivo gene expression in the airway epithelium of CF mice. It was hypothesized that this outcome is largely due to transduction of airway basal cells that in turn pass the transgene onto their progeny. The aim of these studies was to confirm if the in vivo delivery of a human immunodeficiency virus type 1 (HIV-1) vesicular stomatitis virus envelope glycoprotein (VSV-G) pseudotyped LV vector following LPC airway conditioning results in transduction of mouse airway basal cells in situ and if the transgene is passed onto their progeny. Additionally, the study sought to determine the efficiency of in vitro transduction of human airway basal cells. First, normal mouse nasal airways were pretreated with LPC prior to delivery of a HIV-1 VSV-G pseudotyped LV vector carrying a LacZ marker gene (LV-LacZ). An epithelial ablation model utilizing polidocanol was then used to demonstrate that clonal outgrowth of linear and spotted clusters of transgene expressing ciliated, basal, and goblet cells occurs following transduction of basal cells. Second, human basal cells were cultured from primary bronchial epithelial cells, with identity confirmed by keratin 5 staining. High levels of transgene expression were found following LV-LacZ transduction. This study demonstrates the ability of the vector delivery protocol to transduce mouse airway basal cells, the LV vector to transduce human basal cells, and the likely role of these cells in maintaining long-term gene expression. These findings support and further develop the potential of LV gene transfer for persistent correction of CF airway disease.


Assuntos
Expressão Gênica , Lentivirus/metabolismo , Pulmão/citologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Regeneração , Traqueia/citologia , Transdução Genética , beta-Galactosidase/metabolismo
17.
J Tissue Eng Regen Med ; 11(9): 2667-2680, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27878968

RESUMO

Chronic repetitive rounds of injury and repair in the airway lead to airway remodelling, including ciliated cell loss and mucous cell hyperplasia. Airway remodelling is mediated by many growth and differentiation factors including Notch1, which are proteolytically processed by proprotein convertases (PCs). The present study evaluated a novel approach for controlling basal cell-type determination based on the inhibition of PCs. It was found that decanoyl-RVKR-chloromethylketone (CMK), a PC inhibitor, promotes ciliated cell differentiation and has no effect on the ciliary beat frequency in air-liquid interface (ALI) cultures of human nasal epithelial cells (HNECs). Comparative microarray analysis revealed that CMK considerably increases ciliogenesis-related gene expression. Use of cell-permeable and cell-impermeable PC inhibitors suggests that intracellular PCs regulate basal cell-type determination in ALI culture. Furthermore, CMK effect on ciliated cell differentiation was reversed by a Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). CMK inhibited the processing of Notch1, a key regulator of basal cell differentiation toward secretory cell lineages in the airway epithelium, and down-regulated the expression of Notch1 target genes together with furin, a PC. Specific lentiviral shRNA-mediated knockdown of furin resulted in reduced Notch1 processing and increased numbers of ciliated cells in HNECs. Moreover, CMK inhibited Notch1 processing and promoted regeneration and ciliogenesis of the mouse nasal respiratory epithelium after ZnSO4 injury. These observations suggest that PC inhibition promotes airway ciliated cell differentiation, possibly through suppression of furin-mediated Notch1 processing. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , Receptor Notch1/metabolismo , Cílios/metabolismo , Células Epiteliais/citologia , Furina/metabolismo , Humanos , Mucosa Nasal/citologia , Pró-Proteína Convertases/metabolismo
18.
Elife ; 2: e01541, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24157627

RESUMO

A technique for tracing stem cells and their descendants reveals how the lining of the airways is maintained, and how this process is altered in smokers.


Assuntos
Células-Tronco/metabolismo , Processos Estocásticos , Traqueia/metabolismo , Humanos
19.
Elife ; 2: e00966, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24151545

RESUMO

Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.


Assuntos
Células-Tronco/metabolismo , Processos Estocásticos , Traqueia/metabolismo , Células Epiteliais/metabolismo , Humanos , Fumar/metabolismo , Fumar/patologia , Traqueia/citologia
20.
Front Neurosci ; 5: 78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21716644

RESUMO

In neural stem/progenitor cells, expression of the Notch effector Hes1, a transcriptional repressor, oscillates with a period of 2-3 h by negative feedback, and Hes1 oscillations induce the oscillatory expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand gene Delta-like1 (Dll1). Dll1 oscillation leads to the mutual activation of Notch signaling between neighboring cells, thereby maintaining a group of cells in the undifferentiated state. Not all cells express Hes1 in an oscillatory manner: cells in boundary regions such as the isthmus express Hes1 in a sustained manner, and these cells are rather dormant with regard to proliferation and differentiation. Thus, Hes1 allows cell proliferation and differentiation when its expression oscillates but induces dormancy when its expression is sustained. After Hes1 expression is repressed, Ngn2 is expressed in a sustained manner, promoting neuronal differentiation. Thus, Ngn2 leads to the maintenance of neural stem/progenitor cells by inducing Dll1 oscillation when its expression oscillates but to neuronal differentiation when its expression is sustained. These results indicate that the different dynamics of Hes1 and Ngn2 lead to different outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA