RESUMO
This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.
Assuntos
Aeromonas hydrophila , Antioxidantes , Berberina , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Berberina/farmacologia , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Braquiúros/microbiologia , Braquiúros/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismoRESUMO
The increasing prevalence of extensively drug-and pan-drug-resistant Pseudomonas aeruginosa is a major concern for global public health. Therefore, it is crucial to develop novel antimicrobials that specifically target P. aeruginosa and its biofilms. In the present study, we determined that berberine hydrochloride inhibited the growth of planktonic bacteria as well as prevented the formation of biofilms. Moreover, we observed downregulation in the expression of pslA and pelA biofilm-related genes. Compared with existing antibiotics, berberine hydrochloride exhibits multiple modes of action against P. aeruginosa. Our findings suggest that berberine hydrochloride exerts its antimicrobial effects by damaging bacterial cell membranes, generating reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP) levels. Furthermore, berberine hydrochloride showed minimal cytotoxicity and reduced susceptibility to drug resistance. In a mouse model of peritonitis, it significantly inhibited the growth of P. aeruginosa and exhibited a strong bacteriostatic action. In conclusion, berberine hydrochloride is a safe and effective antibacterial agent that inhibits the growth of P. aeruginosa.
Assuntos
Trifosfato de Adenosina , Antibacterianos , Berberina , Biofilmes , Modelos Animais de Doenças , Testes de Sensibilidade Microbiana , Plâncton , Infecções por Pseudomonas , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Berberina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Animais , Camundongos , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Plâncton/efeitos dos fármacos , Peritonite/microbiologia , Peritonite/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.
Assuntos
Alcaloides , Antibacterianos , Berberina , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Gentamicinas , Matrinas , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas , Quinolizinas , Animais , Gentamicinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Berberina/farmacologia , Antibacterianos/farmacologia , Quinolizinas/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Alcaloides/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Virulência/efeitos dos fármacos , Sinergismo FarmacológicoRESUMO
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) poses a great health threat to humans. Looking for compounds that could reduce the resistance of S. aureus towards methicillin is an effective way to alleviate the antimicrobial resistance crisis. METHODS AND RESULTS: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), Time-killing growth curve, staphyloxanthin and penicillin-binding protein 2a (PBP2a) were detected. A quantitative polymerase chain reaction was used to measure the effect of BBH on the gene transcription profiles of MRSA. The MIC of MRSA-ST59-t437 towards oxacillin was 8 µg/ml, and MBC was 128 µg/ml. After adding a sub-inhibitory concentration of BBH, the MIC and MBC of MRSA-ST59-t478 towards oxacillin went down to 0.125 and 32 µg/ml respectively. The amount of PBP2a and staphyloxanthin were reduced after treatment with BBH. Moreover, the transcription levels of sarA, mecA and fni genes were downregulated. CONCLUSIONS: It is for the first time reported that BBH could inhibit staphyloxanthin synthesis by inhibiting fni gene. Moreover, fni might be the target gene of sarA, and there might be another regulatory pathway to inhibit staphyloxanthin biosynthesis. BBH could effectively reduce the methicillin resistance of MRSA-ST59-t437 by downregulating fni, sarA and mecA genes.
Assuntos
Antibacterianos , Proteínas de Bactérias , Berberina , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Xantofilas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Xantofilas/farmacologia , Berberina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxacilina/farmacologiaRESUMO
Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.
Assuntos
Berberina , Citrus , Metabolismo Energético , Geotrichum , Doenças das Plantas , Esporos Fúngicos , Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Geotrichum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Berberina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fungicidas Industriais/farmacologiaRESUMO
In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 µg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.
Assuntos
Berberina , Eczema , Animais , Camundongos , Antioxidantes/farmacologia , Berberina/farmacologia , Lipossomos , Peróxido de Hidrogênio , Peróxidos LipídicosRESUMO
Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.
Assuntos
Berberina , Nanopartículas , Berberina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/farmacologia , Antibacterianos/farmacologiaRESUMO
OBJECTIVE: In our previous taste-masking study, we found that Acesulfame K (AK) had a better taste-masking effect than other high-efficiency sweeteners for several representative bitter natural drugs in aqueous decoction. Furthermore, we performed a preliminary taste-masking study of AK for representative bitter API Berberine Hydrochloride (BH) and found that it had a good taste-masking effect. We also found that flocculent precipitation was generated in the BH solution, but it was not clear whether it was related to the good taste-masking effect. This study was conducted to explore the taste-masking effect and mechanism of AK on BH. METHODS: The taste-masking effect of AK on BH was evaluated based on the Traditional Human Taste Panel Method and the electronic tongue evaluation method. DSC, XRD, and molecular simulation techniques were used to explore the mechanism of AK on BH, from the macro level and molecular level, respectively. RESULTS: When evaluating the taste-masking effect, we found that 0.1% AK had the best taste-masking effect on BH, while higher concentrations had a worse taste-masking effect. DSC and XRD revealed that the flocculent precipitation was a complex AK-BH. Finally, by simulating the binding of AK, BH, and TAS2R46 receptors, we found the unique taste-masking mechanism of AK. CONCLUSION: The sweet taste stimulus of AK can mask the bitter taste stimulus of BH, and AK can generate AK-BH with BH to reduce the contact between BH and bitter taste receptors. Additionally, it could block the expression of the TAS2R46 receptors.
Assuntos
Berberina , Paladar , Humanos , Berberina/farmacologia , Língua , Percepção GustatóriaRESUMO
Berberine hydrochloride is the main effective component of Coptis spp. used in Chinese herbal medicine and its underlying molecular mechanisms, responsible for inducing effects in crustacean species, are not fully understood. In this study, the molecular response of the crab Charybdis japonica to berberine hydrochloride exposure was studied using transcriptome sequencing. The survival rate, gene expression and activities of several immune enzymes were measured after berberine hydrochloride treatments, with or without injection of the pathogenic bacterium Aeromonas hydrophila. A total of 962 differentially expressed genes (464 up-regulated and 498 down-regulated) were observed during exposure to 100 mg/L of berberine hydrochloride and in the control group after 48 h. Enrichment analysis revealed that these genes are involved in metabolism, cellular processes, signal transduction and immune functions, indicating that exposure to berberine hydrochloride activated the immune complement system. This bioactive compound simultaneously activated fibrinogen beta (FGB), fibrinogen alpha (FGA), alpha-2-macroglobulin (A2M), kininogen (KNG), fibrinogen gamma chain (FGB), alpha-2-HS-glycoprotein (AHSG), caspase-8 (CASP8), cathepsin L (CTSL), adenylate cyclase 3 (Adcy3) and MMP1. Its action could significantly increase the survival rate of the crabs injected with A. hydrophila and promote the activity of LZM, Caspas8, FGA, ACP and AKP in the hepatopancreas. When A. hydrophila was added, the neutralization of 300 mg/L berberine hydrochloride maximized the activities of Caspas8, LZM, ACP and AKP. Our results provide a new understanding of the potential effects of berberine hydrochloride on the immune system mechanisms in crustaceans.
Assuntos
Berberina , Braquiúros , Animais , Berberina/farmacologia , Braquiúros/genética , Fibrinogênio/farmacologia , Hepatopâncreas , Imunidade/genéticaRESUMO
AIMS: Berberine hydrochloride (BBR) is efficacious in relieving alcoholic liver injury (ALI) in animal models, but its underlying mechanisms remains largely unclear. METHODS AND RESULTS: In the study, the rats were divided into control group, model group, model with BBR group, and control with BBR group, and given corresponding treatment for 4 weeks. RNA-Seq, ELISA and RT-PCR were performed to explore the potential mechanisms of BBR in ALI. Treatment of rats with BBR (200 mg/kg/d, gavage, once daily) over 4 weeks diminished 4 g/kg/d alcohol-induced inflammation and lipid deposition. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in BBR-treated rats. Hepatic gene expression profile detected that BBR suppressed ethanol-stimulated overexpression of thyroid hormone responsive gene-THRSP. And overexpression of THRSP-responsive genes (fatty acid synthase-FASN, adenosine monophosphate activated protein kinase α-AMPK-α, acetyl-CoA carboxylase-ACC, ATP-citrate lyase-ACLY) responsible for fatty acid synthesis was also downregulated by BBR. Additionally, BBR downregulated expression of cluster of differentiation 36-CD36 and upregulated expression of peroxisome proliferator-activated receptor α (PPARα) and its target genes (carnitine palmitoyltransferase 1 α-CPT1α and acyl-CoA oxidase 1-ACOX1). Meanwhile, BBR treatment suppressed systemic inflammation by mediating a reduction in IL-10, TNF-α, LPS, and ET, but elevated IL-6. CONCLUSIONS: The results indicated that BBR alleviated alcoholism-induced hepatic injury by suppressing inflammation (IL-10, TNF-α, LPS, ET and IL-6), and regulating fatty acids uptake (CD36), lipid synthesis (THRSP, FASN, AMPK-α, ACC, ACLY) and lipid oxidation (PPARα, CPT1α, ACOX1), and THRSP may be its novel target.
Assuntos
Berberina , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Berberina/uso terapêutico , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Etanol/efeitos adversos , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The mechanism of berberine hydrochloride (BBH) inhibiting the biofilm formation of Hafnia alvei was investigated in this study. The antibiofilm potential of BBH was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) as well as crystal violet staining. The quorum-sensing (QS) inhibition was revealed by determination of QS-related genes expression and related signal molecules production using real-time quantitative PCR (RT-qPCR) and high performance liquid chromatography (HPLC). The binding of BBH to receptor proteins was simulated by molecular docking and molecular dynamics simulations. It was found that BBH at sub-minimum inhibitory concentrations (sub-MICs) significantly reduced the biofilm formation of H. alvei in a dose dependent manner. BBH inhibited the bacterial swimming motility, decreased the transcription of halI and halR genes, and reduced the production of signal molecule C14-HSL. It bound to HalR protein mainly through Van der Waals force and electrostatic interaction force. Based on these results, it was concluded that BBH inhibits the biofilm formation of H. alvei and the mechanism is related to its interference with QS through down-regulating the expression of halI and halR genes.
Assuntos
Berberina , Hafnia alvei , Antibacterianos/farmacologia , Berberina/farmacologia , Biofilmes , Simulação de Acoplamento Molecular , Percepção de QuorumRESUMO
The rectal enemas of berberine hydrochloride (BH) have emerged as one of the most effective strategies in the clinical treatment of ulcerative colitis (UC). However, oral dosages of BH exhibit a poor anti-inflammatory effect of UC, which may attribute to premature absorption of BH by the upper gastrointestinal tract. Moreover, the thick colonic mucus layer obstructs the penetration of the drug, resulting in low bioavailability to the inflammatory site of the colon. The aim of this study was to develop the mucus-penetrating sodium alginate-chitosan nanoparticles (SA-CS NPs) for oral delivery of BH to the site of colonic ulcer lesions. BH-loaded SA-CS NPs were developed through the ionic gelation method and analyzed for physicochemical characteristics, release performance, penetrability, site retention, and therapeutic efficacy. The results showed that the NPs have a particle size of 257 nm with a negative charge, presenting desired pH-dependent release behavior. The permeation studies elucidated that negatively charged SA-CS NPs had 2.9 times higher mucus penetration ability than positively charged CS NPs. An ex vivo retention study indicated the high retention of BH-SA-CS NPs at the colon site for more than 16 h. In vivo therapeutic effectiveness demonstrated that the prepared NPs could not only alleviate colonic injury by decreasing the disease activity index and colon mucosa damage index, but also improve the immunologic function by decreasing the spleen index. In conclusion, the BH-SA-CS NPs could enhance the mucus permeability and deliver drugs to the colonic inflammation site, providing new insights into improving the therapeutic effect of UC.
Assuntos
Berberina , Quitosana , Colite Ulcerativa , Nanopartículas , Administração Oral , Alginatos , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Inflamação/tratamento farmacológico , MucoRESUMO
Objective: To study the inhibitory effect of berberine hydrochloride (BBR) on BPH and its underlying mechanism in male rats. METHODS: Forty male rats were randomly divided into a normal control, a BPH model control, a BBR intervention, and a BBR+Bruceol intervention group, and the BPH model was established in the latter three groups. The animals in the normal and BPH model control groups were treated intragastrically with normal saline, and those in the BBR and BBR+Bruceol intervention groups with BBR at 200 mg/kg and BBR plus Bruceol at 1 mg/kg, respectively, once a day for 14 consecutive days. The prostates of the rats were harvested for measurement of their wet weight and prostatic index, detection of the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) and determination of the protein expressions of nuclear factor E2-related factor 2 (Nrf2), antioxidant response element (ARE) and reduced coenzyme I quinone oxidoreductase (NQO1) in the prostate tissue by Western blot. RESULTS: The wet weights of the prostate in the normal control, BPH model control, BBR intervention, and BBR+Bruceol intervention groups were (715.63 ± 28.57) mg, (1118.93 ± 36.41) mg, (896.21 ± 20.24) mg and (967.23 ± 24.98) mg, the prostate indexes were 2.10 ± 0.13, 3.45 ± 0.22, 2.75 ± 0.19 and 3.01 ± 0.14, the SOD contents in the prostate tissue were (38.54 ± 5.12) U/mg, (13.98 ± 2.01) U/mg, (26.75 ± 3.19) U/mg and (20.16 ± 4.10) U/mg, and the MDA contents were (3.59 ± 0.83) nmol/mg, (12.63 ± 3.26) nmol/mg, (7.20 ± 1.69) nmol/mg and (9.85 ± 1.71) nmol/mg, respectively. The relative expressions of the Nrf2 protein in the four groups were 0.53 ± 0.06, 0.12 ± 0.03, 0.36 ± 0.04 and 0.25 ± 0.03, those of the ARE protein were 0.69 ± 0.07, 0.21 ± 0.02, 0.50 ± 0.06 and 0.30 ± 0.04, and those of the NQO1 protein were 0.44 ± 0.05, 0.15 ± 0.03, 0.30 ± 0.04 and 0.22 ± 0.03, respectively. There were statistically significant differences in all the above indicators between the normal and BPH model control groups (P < 0.05), as well as between the BPH model control and BBR intervention groups (P < 0.05) and between the BPH model control and the BBR+Bruceol intervention groups (P < 0.05). CONCLUSIONS: BBR hydrochloride can inhibit prostatic hyperplasia in BPH rats and reduce oxidative stress and pathological changes by activating the Nrf2/ARE pathway.
RESUMO
The present study explored the correlation between the hydrodynamic size(i.e., hydrated particle size) and the surface component distribution of spray-dried powder based on the binary system model of berberine hydrochloride and dextran. A variety of mixture solutions containing substances of different proportions were prepared, and the hydrated particle sizes of the solutions were measured by laser light scattering technique. Then the effects of molecular weight and mixing proportion on the particle size were analyzed. After the solutions were spray-dried, the surface components of spray-dried powder were determined by X-ray photoelectron spectroscopy. The changes of hydrated particle size of the two substances in different solutions were measured with the altered solution environments, and the distribution of surface components after spray-drying was observed. The results of particle size measurement showed that different solution environments would change the hydrodynamic size of substances. Specifically, the particle size of berberine hydrochloride increased with the increase in ionic strength and solution pH, while the particle size of dextran decreased with the increase in ionic strength and increased with the increase in solution pH. The results of surface components of the spray-dried powder indicated that berberine hydrochloride was prone to accumulate on the surface of particles during spray-drying because of its large hydrodynamic size. Therefore, hydrodynamic size is considered an important factor affecting the surface component distribution of spray-dried powder. As revealed by scanning electron microscopy of the particle morphology of spray-dried powder, the particles of berberine hydrochloride spray-dried powder were irregularly elliptic, and the particles of dextran and mixture spray-dried powders were irregularly spherical with the shrunken surface. Finally, the FT4 powder rheometer and DVS instrument were used to determine the stability, adhesion, and hygroscopicity of the powder. The results showed that when berberine hydrochloride was enriched on the surface, the adhesion of the mixture increased and the fluidity became worse, but the hygroscopicity was improved to a certain extent. In addition, as found by hygroscopic kinetic curve fitting of spray-dried powder, the hygroscopic behaviors of all spray-dried powder conformed to the double exponential function.
Assuntos
Berberina , Administração por Inalação , Aerossóis/química , Dextranos , Inaladores de Pó Seco/métodos , Hidrodinâmica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós/químicaRESUMO
In this report, we develop a dual-output sensor with fluorometric and colorimetric responses, for the rapid and simple detection of berberine hydrochloride (BRH) in 100% aqueous solution based on an anionic polythiophene derivative, poly(2-(2-(4-methylthiophen-3-yloxy)-ethyl) malonic acid) (PTMA). The sensing performance and mechanism were carefully examined by absorption and emission spectra. It can be applied to quantitatively detect BRH in aqueous solution with a detection limit 0.27 µM. The appealing performance of the sensor was demonstrated to originate from the electrostatic and π-π interactions between PTMA and BRH, which promoted the conformational change and aggregation of the PTMA backbone. Moreover, this method allowed rapid detection of BRH in urine samples and BRH tablets with high accuracy.
Assuntos
Berberina , Colorimetria , Polímeros , TiofenosRESUMO
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.
Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Cardiomegalia/metabolismo , Cardiotônicos/química , Células Cultivadas , Miócitos Cardíacos/metabolismo , Compostos Fitoquímicos/química , Ratos , Ratos Sprague-DawleyRESUMO
The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on ß-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and ß-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 µg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans ß-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and ß-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and ß-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose ß-glucan and damage the integrity of the wall.
Assuntos
Berberina , Candida albicans , Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/genética , Parede Celular , Hifas , Testes de Sensibilidade MicrobianaRESUMO
The present study aims to investigate the effects of the main components(aesculin, berberine hydrochloride, and anemoside B4) in the butyl alcohol extract of Baitouweng Decoction(BAEB) on the chemotaxis of neutrophils induced by dimethyl sulfoxide(DMSO). HL60 cells were cultivated in RPMI-1640 complete medium, and transferred into a 6-well plate(2 × 10~5 per mL) with 4 mL in each well, followed by incubation with DMSO at 1.3% for five days. The morphologic changes of cells were observed under an inverted microscope. The CD11 b expression after DMSO induction was analyzed by flow cytometry. The effects of aesculin, berberine hydrochloride, and anemoside B4 on the cell proliferation and migration were detected by CCK8 assay and Transwell assay, respectively. The effects of the main components on the production and polarization of F-actin protein were also examined by flow cytometry and laser confocal microscopy. PI3 K/Akt signaling pathway was checked by Western blot. As revealed by the results, neutrophil-like HL60 cells were observed after DMSO induction. The CD11 b expression in these cells increased significantly as indicated by the flow cytometry. Additionally, 100 µg·mL~(-1) aesculin, 8 µg·mL~(-1) berberine hydrochloride, and 80 µg·mL~(-1) anemoside B4 were potent in inhibiting the migration of neutrophils and reducing F-actin expression. Berberine hydrochloride was verified to be capable of diminishing phosphorylated PI3 K/Akt protein expression. The findings indicate that aesculin, anemoside B4, and especially berberine hydrochloride in the BAEB can inhibit the chemotaxis of neutrophils, which is possibly achieved by the inhibition of F-actin and PI3 K/Akt signaling pathway.
Assuntos
Berberina , Medicamentos de Ervas Chinesas , 1-Butanol , Berberina/farmacologia , Quimiotaxia , Medicamentos de Ervas Chinesas/farmacologia , NeutrófilosRESUMO
OBJECTIVE: This study aimed to investigate the inhibitory effect of berberine hydrochloride (BH) on Candida albicans (C.albicans) ATCC10231 biofilm formation. RESULTS: This paper found a positive correlation between the concentration of BH and its inhibitory effect on the cellular activity of early biofilms because we found that 128 and 32 µg/mL BH significantly inhibited biofilm formation (P < 0.05). BH significantly inhibited the cellular activity in early biofilms, destroyed the microscopic morphology of C.albicans and reduced the thickness of the biofilm. Both 128 and 32 µg/mL concentration solutions of BH significantly inhibited biofilm formation (P < 0.05). We found that the inhibitory effect of BH solution was positively correlated with its concentration and 128 µg/mL BH was better than 4 µg/mL fluconazole. Additionally, the results of RT-PCR indicated that 128 and 32 µg/mL BH inhibited the expression of EFG1, HWP1, ECE1, and ALS1 (P < 0.05). CONCLUSION: The efficacy of BH in inhibiting the formation of C.albicans biofilm by killing the cells in the biofilm and destroying its structure; and the mechanism may be to down-regulate the expression of EFG1, HWP1, ECE1, and ALS1 in hyphae formation, thereby, retarding the morphological transformation of C. albicans.
Assuntos
Antifúngicos/farmacologia , Berberina/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Proteínas Fúngicas/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Fatores de Transcrição/genéticaRESUMO
Microspheres containing absorption enhancer (sodium N-[8-(2-hydroxybenzoyl)amino]caprylate, SNAC) were developed to enhance the oral bioavailability of berberine hydrochloride (BER) with poor intestinal membrane permeability. Microspheres were prepared and characterized by particle size measurements, scanning electron microscopy, differential scanning calorimetry, BER payload and release, Caco-2 cell monolayer transport, and rat pharmacokinetics. The microspheres were spherical and had uniform size, high encapsulation efficiency and high loading capacity. In vitro release studies showed that BER-loaded microspheres had good sustained release characteristics. The Caco-2 cell monolayer transport study proved that SNAC could significantly enhance permeability of BER 2-3-fold. Pharmacokinetic studies demonstrated a 9.87-fold increase in area under the curve (AUC) of BER mixed with SNAC and a 14.14-fold increase in AUC of microspheres compared with BER alone. These findings indicate that SNAC is a promising absorption enhancer for oral delivery of BER in the form of both solution and microspheres.