Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
RNA ; 29(5): 675-690, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810233

RESUMO

Rapid plastic response to environmental changes, which involves extremely complex underlying mechanisms, is crucial for organismal survival during many ecological and evolutionary processes such as those in global change and biological invasions. Gene expression is among the most studied molecular plasticity, while co- or posttranscriptional mechanisms are still largely unexplored. Using a model invasive ascidian Ciona savignyi, we studied multidimensional short-term plasticity in response to hyper- and hyposalinity stresses, covering the physiological adjustment, gene expression, alternative splicing (AS), and alternative polyadenylation (APA) regulations. Our results demonstrated that rapid plastic response varied with environmental context, timescales, and molecular regulatory levels. Gene expression, AS, and APA regulations independently acted on different gene sets and corresponding biological functions, highlighting their nonredundant roles in rapid environmental adaptation. Stress-induced gene expression changes illustrated the use of a strategy of accumulating free amino acids under high salinity and losing/reducing them during low salinity to maintain the osmotic homoeostasis. Genes with more exons were inclined to use AS regulations, and isoform switches in functional genes such as SLC2a5 and Cyb5r3 resulted in enhanced transporting activities by up-regulating the isoforms with more transmembrane regions. The extensive 3'-untranslated region (3'UTR) shortening through APA was induced by both salinity stresses, and APA regulation predominated transcriptomic changes at some stages of stress response. The findings here provide evidence for complex plastic mechanisms to environmental changes, and thereby highlight the importance of systemically integrating different levels of regulatory mechanisms in studying initial plasticity in evolutionary trajectories.


Assuntos
Aclimatação , Transcriptoma , Aclimatação/genética , Perfilação da Expressão Gênica , Regiões 3' não Traduzidas/genética , Isoformas de Proteínas/genética , Processamento Alternativo , Poliadenilação
2.
Proc Natl Acad Sci U S A ; 119(31): e2121858119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895682

RESUMO

Contemporary evolution has the potential to significantly alter biotic responses to global change, including range expansion dynamics and biological invasions. Models predicting range dynamics often make highly simplifying assumptions about the genetic architecture underlying relevant traits. However, genetic architecture defines evolvability and higher-order evolutionary processes, which determine whether evolution will be able to keep up with environmental change or not. Therefore, we here study the impact of the genetic architecture of dispersal and local adaptation, two central traits of high relevance for range expansions, on the dynamics and predictability of invasion into an environmental gradient, such as temperature. In our theoretical model we assume that dispersal and local adaptation traits result from the products of two noninteracting gene-regulatory networks (GRNs). We compare our model to simpler quantitative genetics models and show that in the GRN model, range expansions are accelerating and less predictable. We further find that accelerating dynamics in the GRN model are primarily driven by an increase in the rate of local adaptation to novel habitats which results from greater sensitivity to mutation (decreased robustness) and increased gene expression. Our results highlight how processes at microscopic scales, here within genomes, can impact the predictions of large-scale, macroscopic phenomena, such as range expansions, by modulating the rate of evolution.


Assuntos
Adaptação Fisiológica , Redes Reguladoras de Genes , Modelos Genéticos , Adaptação Fisiológica/genética , Ecossistema , Humanos , Mutação
3.
Proc Natl Acad Sci U S A ; 119(28): e2123274119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35759652

RESUMO

Biotic interactions that hierarchically organize ecosystems by driving ecological and evolutionary processes across spatial scales are ubiquitous in our biosphere. Biotic interactions have been extensively studied at local and global scales, but how long-distance, cross-ecosystem interactions at intermediate landscape scales influence the structure, function, and resilience of ecological systems remains poorly understood. We used remote sensing, modeling, and field data to test the hypothesis that the long-distance impact of an invasive species dramatically affects one of the largest tidal flat ecosystems in East Asia. We found that the invasion of exotic cordgrass Spartina alterniflora can produce long-distance effects on native species up to 10 km away, driving decadal coastal ecosystem transitions. The invasive cordgrass at low elevations facilitated the expansion of the native reed Phragmites australis at high elevations, leading to the massive loss and reduced resilience of the iconic Suaeda salsa "Red Beach" marshes at intermediate elevations, largely as a consequence of reduced soil salinity across the landscape. Our results illustrate the complex role that long-distance interactions can play in shaping landscape structure and ecosystem resilience and in bridging the gap between local and global biotic interactions.


Assuntos
Biota , Espécies Introduzidas , Poaceae , Áreas Alagadas , Salinidade , Solo/química
4.
BMC Genomics ; 25(1): 541, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822259

RESUMO

BACKGROUND: Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS: Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS: Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.


Assuntos
Voo Animal , Espécies Introduzidas , Mariposas , Animais , Mariposas/genética , Mariposas/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Fenótipo , Transcriptoma , Complexo de Mariposas do Gênero Lymantria
5.
Ecol Lett ; 27(9): e14504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354910

RESUMO

Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity-invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of 'historical' and 'contemporary' environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity-invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.


Assuntos
Biodiversidade , Secas , Espécies Introduzidas , Microbiologia do Solo , Plantas/microbiologia
6.
Ecol Lett ; 27(3): e14406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491734

RESUMO

Rapid evolution in colonising populations can alter our ability to predict future range expansions. Recent theory suggests that the dynamics of replicate range expansions are less variable, and hence more predictable, with increased selection at the expanding range front. Here, we test whether selection from environmental gradients across space produces more consistent range expansion speeds, using the experimental evolution of replicate duckweed populations colonising landscapes with and without a temperature gradient. We found that the range expansion across a temperature gradient was slower on average, with range-front populations displaying higher population densities, and genetic signatures and trait changes consistent with directional selection. Despite this, we found that with a spatial gradient range expansion speed became more variable and less consistent among replicates over time. Our results therefore challenge current theory, highlighting that chance can still shape the genetic response to selection to influence our ability to predict range expansion speeds.


Assuntos
Evolução Biológica , Dinâmica Populacional , Temperatura , Densidade Demográfica , Fenótipo
7.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844870

RESUMO

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Assuntos
Espécies Introduzidas , Mikania , Árvores , Mikania/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo
8.
Proc Biol Sci ; 291(2025): rspb20240844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889781

RESUMO

Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.


Assuntos
Biodiversidade , Espécies Introduzidas , Ilhas , Animais , Conservação dos Recursos Naturais , Ecossistema , Aves/fisiologia , Anfíbios/fisiologia , Mamíferos/fisiologia , Répteis/fisiologia
9.
Mol Ecol ; 33(17): e17492, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136044

RESUMO

Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.


Assuntos
Calliphoridae , Aptidão Genética , Variação Genética , Genética Populacional , Espécies Introduzidas , Polimorfismo de Nucleotídeo Único , Animais , Austrália , Nova Zelândia , Calliphoridae/genética , Polimorfismo de Nucleotídeo Único/genética , Endogamia , Fenótipo , Dípteros/genética
10.
Glob Chang Biol ; 30(7): e17426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049564

RESUMO

The ecological impact of non-native species arises from their establishment in local assemblages. However, the rates of non-native spread in new regions and their determinants have not been comprehensively studied. Here, we combined global databases documenting the occurrence of non-native species and residence of non-native birds, mammals, and vascular plants at regional and local scales to describe how the likelihood of non-native occurrence and their proportion in local assemblages relate with their residence time and levels of human usage in different ecosystems. Our findings reveal that local non-native occurrence generally increases with residence time. Colonization is most rapid in croplands and urban areas, while it is slower and variable in natural or semi-natural ecosystems. Notably, non-native occurrence continues to rise even 200 years after introduction, especially for birds and vascular plants, and in other land-use types rather than croplands and urban areas. The impact of residence time on non-native proportions is significant only for mammals. We conclude that the continental exchange of biotas requires considerable time for effects to manifest at the local scale across taxa and land-use types. The unpredictability of future impacts, implied by the slow spread of non-native species, strengthens the call for stronger regulations on the exchange of non-native species to reduce the long-lasting invasion debt looming on ecosystems' future.


Assuntos
Aves , Espécies Introduzidas , Mamíferos , Animais , Plantas , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais
11.
Glob Chang Biol ; 30(1): e17137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273500

RESUMO

Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.


Assuntos
Clima , Espécies Introduzidas , Animais , Humanos , Vertebrados , Mudança Climática , Ecossistema
12.
Ecol Appl ; 34(1): e2831, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36860184

RESUMO

Anthropogenic climate change, land use modifications, and alien species invasions are major threats to global biodiversity. Protected areas (PAs) are regarded as the cornerstone of biodiversity conservation, however, few studies have quantified the vulnerability of PAs to these global change factors together. Here, we overlay the risks of climate change, land use change, and alien vertebrate establishment within boundaries of a total of 1020 PAs with different administrative levels in China to quantify their vulnerabilities. Our results show that 56.6% of PAs will face at least one stress factor, and 21 PAs are threatened under the highest risk with three stressors simultaneously. PAs designed for forest conservation in Southwest and South China are most sensitive to the three global change factors. In addition, wildlife and wetland PAs are predicted to mainly experience climate change and high land use anthropogenetic modifications, and many wildlife PAs can also provide suitable habitats for alien vertebrate establishment. Our study highlights the urgent need for proactive conservation and management planning of Chinese PAs by considering different global change factors together.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Ecossistema , Espécies Introduzidas
13.
Ecol Appl ; : e3028, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284744

RESUMO

Exotic annual grass invasions in water-limited systems cause degradation of native plant and animal communities and increased fire risk. The life history of invasive annual grasses allows for high sensitivity to interannual variability in weather. Current distribution and abundance models derived from remote sensing, however, provide only a coarse understanding of how species respond to weather, making it difficult to anticipate how climate change will affect vulnerability to invasion. Here, we derived germination covariates (rate sums) from mechanistic germination and soil microclimate models to quantify the favorability of soil microclimate for cheatgrass (Bromus tectorum L.) establishment and growth across 30 years at 2662 sites across the sagebrush steppe system in the western United States. Our approach, using four bioclimatic covariates alone, predicted cheatgrass distribution with accuracy comparable to previous models fit using many years of remotely-sensed imagery. Accuracy metrics from our out-of-sample testing dataset indicate that our model predicted distribution well (72% overall accuracy) but explained patterns of abundance poorly (R2 = 0.22). Climatic suitability for cheatgrass presence depended on both spatial (mean) and temporal (annual anomaly) variation of fall and spring rate sums. Sites that on average have warm and wet fall soils and warm and wet spring soils (high rate sums during these periods) were predicted to have a high abundance of cheatgrass. Interannual variation in fall soil conditions had a greater impact on cheatgrass presence and abundance than spring conditions. Our model predicts that climate change has already affected cheatgrass distribution with suitable microclimatic conditions expanding 10%-17% from 1989 to 2019 across all aspects at low- to mid-elevation sites, while high- elevation sites (>2100 m) remain unfavorable for cheatgrass due to cold spring and fall soils.

14.
Ecol Appl ; 34(1): e2813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36708094

RESUMO

Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e., convex and concave sides) in regulating the Spartina alterniflora invasion remains unclear. Here, we examined the combined effects of tidal channel meander-mediated hydrodynamic variables, soil abiotic stresses, and propagule pressure on the colonization of Spartina in the Yellow River Delta, China, by conducting field observations and experiments. The results showed that lower hydrodynamic disturbance, bed shear stress, and higher propagule pressure triggered by eddies due to the convex structure of channel meanders facilitated Spartina seedling establishment and growth, whereas the concave side considerably inhibited the Spartina invasion. Lower soil abiotic stresses also significantly promoted the invasibility of the channel meanders by Spartina. Based on these findings, we propose a conceptual framework to illustrate the effects of the meandering geomorphology of tidal channels on the mechanisms that might allow the landward spread of Spartina and related processes. Our results demonstrate that the meandering geomorphic structures of tidal channels could act as stepping-stones to significantly facilitate the landward invasion of Spartina along tidal channels. This implies that geomorphic characteristics of tidal channels should be integrated into invasive species control and salt marsh management strategies.


Assuntos
Ecossistema , Áreas Alagadas , Espécies Introduzidas , Poaceae , China , Solo/química
15.
Naturwissenschaften ; 111(3): 31, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780649

RESUMO

In social hymenopterans, monandry of the queen is an ancestral trait, and polyandry is a derived trait. Polyandry of the queen is the norm in a limited number of lineages, such as honeybees, leaf-cutting ants, Pogonomyrmex ants, and Vespula wasps, which presumably provide fitness advantages for the whole colony. The queen of the introduced bumblebee, Bombus terrestris, is polyandrous in Japan, whereas it is monandrous in native regions. We hypothesize that polyandry can evolve in a process that avoids the negative impacts of reproductive interference caused by interspecific mating and conducted genetic studies of the invasive species B. terrestris and two native subspecies, Bombus hypocrita sapporoensis and Bombus hypocrita hypocrita, in Japan. Our results revealed that although the native queens of B. hypocrita hypocrita allopatric with B. terrestris were strictly monandrous, the native queens of B. hypocrita sapporoensis sympatric with B. terrestris were polyandrous. These results suggested that the queens of native B. hypocrita sapporoensis do not experience negative impacts on interspecific mating from the invasive B. terrestris. We discuss the possibility that reproductive interference is a driving force in selection for multiple mating through an arms race between sympatric species.


Assuntos
Reprodução , Comportamento Sexual Animal , Animais , Japão , Abelhas/fisiologia , Comportamento Sexual Animal/fisiologia , Feminino , Reprodução/fisiologia , Masculino , Espécies Introduzidas
16.
Conserv Biol ; : e14290, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708868

RESUMO

The conservation-invasion paradox (CIP) refers to a long-term phenomenon wherein species threatened in their native range can sustain viable populations when introduced to other regions. Understanding the drivers of CIP is helpful for conserving threatened species and managing invasive species, which is unfortunately still lacking. We compiled a global data set of 1071 introduction events, including 960 CIP events (successful establishment of threatened species outside its native range) and 111 non-CIP events (unsuccessful establishment of threatened species outside its native range after introduction), involving 174 terrestrial vertebrates. We then tested the relative importance of various predictors at the location, event, and species levels with generalized linear mixed models and model averaging. Successful CIP events occurred across taxonomic groups and biogeographic realms, especially for the mammal group in the Palearctic and Australia. Locations of successful CIP events had fewer native threat factors, especially less climate warming in invaded regions. The probability of a successful CIP event was highest when species introduction efforts were great and there were more local congeners and fewer natural enemies. These results can inform threatened species ex situ conservation and non-native invasive species mitigation.


Causantes mundiales de la paradoja conservación­invasión Resumen La paradoja de conservación­invasión (PCI) se refiere al evento a largo plazo en el que las especies amenazadas en su distribución nativa puedan mantener poblaciones viables cuando se les introduce a otras regiones. Es de mucha ayuda para la conservación de especies amenazadas y el manejo de especies invasoras entender las causantes de la PCI, entendimiento que todavía es escaso. Compilamos un conjunto mundial de datos de 174 vertebrados terrestres en 1071 eventos de introducción, incluyendo 960 eventos de PCI (el establecimiento exitoso de especies amenazadas fuera de su distribución nativa) y 111 eventos no PCI (el fracaso en el establecimiento de especies amenazadas fuera de su distribución nativa después de la introducción). Después analizamos con modelos lineales mixtos generalizados y promedio de modelos la importancia relativa de varios pronosticadores en la localidad, en el evento y a nivel de especie. Los eventos exitosos de PCI ocurrieron en todos los grupos taxonómicos y en todos los reinos biogeográficos, especialmente para los mamíferos del Paleártico y Australia. Las localidades de los eventos exitosos de PCI tuvieron menos factores nativos de amenaza, especialmente un menor calentamiento climático en las regiones invadidas. La probabilidad de que un evento de PCI sea exitoso fue mayor cuando los esfuerzos de introducción fueron mayores y hubo más congéneres locales y menos enemigos naturales. Estos resultados pueden orientar la conservación ex situ de especies y la mitigación de especies invasoras no nativas.

17.
Environ Sci Technol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352838

RESUMO

Saltmarsh wetlands are recognized as some of the most ecologically valuable yet vulnerable ecosystems globally. However, since the 1970s, saltmarsh wetlands in coastal China have been seriously threatened by the invasive Spartina alterniflora. Although the Chinese government has initiated a nationwide S. alterniflora removal project, the potential benefits and risks of this project remain unknown. Here, we focus on the Yangtze River Estuary Saltmarsh Wetland (YRESW) and simulate its future ecosystem structure, function, and quality under three scenarios based on remote sensing and field investigation data. The simulation scenarios include the absence of a removal project, natural regeneration postproject (NRP), and planted restoration postproject. The results show that the removal project will reverse the escalating invasion trend of S. alterniflora in the YRESW. Compared to the baseline year of 2022, there is a remarkable increase in ecosystem structure (composition: +107%, configuration: +27%) and ecosystem quality (+10.5%) under the NRP scenario. Although blue carbon storage sharply decreases under both scenarios involving project implementation, planted restoration can restore YRESW's carbon sequestration capacity to 0.19 Tg C per year, achieving 87% of the carbon storage present before the project. This study underscores the necessity of comprehensive and detailed risk assessments in ecological projects, particularly when dominant species are involved. Our findings hold significant implications for stabilizing coastal wetland ecosystems and promoting sustainable development in coastal areas.

18.
Oecologia ; 204(4): 761-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536504

RESUMO

Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different periods of time. We tested whether they exhibited different climatic niches using Schoener's D and Hellinger's I indices and modeled their current potential geographical ranges using the Maxent algorithm. The resulting models were projected according to future and recent past climate datasets for Europe and the Mediterranean region. The future projections were performed for the periods 2041-2070 and 2071-2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in climate suitability in Southern Europe and an increase in North Eastern Europe in 2071-2100. Most of Southern and Western Europe was evaluated as already suitable for both clusters in the early twentieth century. Our results show that large climatically suitable regions still remain uncolonized and that climate change will affect the geographical distribution of climatically suitable areas. Climate conditions in Europe were favorable in the twentieth century, suggesting that the recent colonization of Europe is rather due to an increase in propagule pressure via international trade than to recent environmental changes.


Assuntos
Mudança Climática , Besouros , Espécies Introduzidas , Animais , Europa (Continente) , Modelos Biológicos , Ecossistema
19.
Environ Res ; 242: 117636, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952853

RESUMO

Native biodiversity and ecosystems of Antarctica safeguarded from biological invasion face recent threats from non-native species, accelerated by increasing human activities and climate changes. Over two decades ago, the winter crane fly, Trichocera maculipennis, was first detected on King George Island. It has now successfully colonized several research stations across King George Island. To understand the origin, genetic diversity, and population structure of this Holarctic species, we conducted mitochondrial DNA cytochrome c oxidase subunit I (COI) sequence analysis across both its native and invasive ranges. In parallel, we performed microsatellite loci analysis within the invasive ranges, utilizing 12 polymorphic microsatellite markers. Furthermore, we compared body sizes among adult males and females collected from three different locations of King George Island. Our COI sequence analysis exhibited two different lineages present on King George Island. Lineage I was linked to Arctic Svalbard and Polish cave populations and Lineage II was related to Canadian Terra Nova National Park populations, implying multiple origins. Microsatellite analysis further exhibited high levels of genetic diversity and significant levels of genetic differentiation among invasive populations. Body sizes of adult T. maculipennis were significantly different among invasive populations but were not attributed to genetics. This significant genetic diversity likely facilitated the rapid colonization and establishment of T. maculipennis on King George Island, contributing to their successful invasion. Molecular analysis results revealed a substantial amount of genetic variation within invasive populations, which can serve as management units for invasive species control. Furthermore, the genetic markers we developed in the study will be invaluable tools for tracking impending invasion events and the travel routes of new individuals. Taken together, these findings illustrate the highly invasive and adaptable characteristics of T. maculipennis. Therefore, immediate action is necessary to mitigate their ongoing invasion and facilitate their eradication.


Assuntos
Dípteros , Ecossistema , Humanos , Masculino , Animais , Feminino , Dípteros/genética , Regiões Antárticas , Canadá , Biodiversidade , Variação Genética , Repetições de Microssatélites
20.
J Math Biol ; 89(3): 31, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033468

RESUMO

The knowledge of traveling wave solutions is the main tool in the study of wave propagation. However, in a spatially heterogeneous environment, traveling wave solutions do not exist, and a different approach is needed. In this paper, we study the generation and the propagation of hyperbolic scale singular limits of a KPP-type reaction-diffusion equation when the carrying capacity is spatially heterogeneous and the diffusion is of a porous medium equation type. We show that the interface propagation speed varies according to the carrying capacity.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Porosidade , Difusão , Simulação por Computador , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA