RESUMO
Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.
Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Sintases/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismoRESUMO
OBJECTIVES: To develop a colorimetric assay for ATP based on the blue-pigment synthesising non-ribosomal peptide synthetase (NRPS) BpsA, and to demonstrate its utility in defining the substrate specificity of other NRPS enzymes. RESULTS: BpsA is able to convert two molecules of L-glutamine into the readily-detected blue pigment indigoidine, consuming two molecules of ATP in the process. We showed that the stoichiometry of this reaction is robust and that it can be performed in a microplate format to accurately quantify ATP concentrations to low micromolar levels in a variety of media, using a spectrophotometric plate-reader. We also demonstrated that the assay can be adapted to evaluate the amino acid substrate preferences of NRPS adenylation domains, by adding pyrophosphatase enzyme to drive consumption of ATP in the presence of the preferred substrate. CONCLUSIONS: The robust nature and simplicity of the reaction protocol offers advantages over existing methods for ATP quantification and NRPS substrate analysis.
Assuntos
Trifosfato de Adenosina/isolamento & purificação , Técnicas Biossensoriais , Colorimetria , Peptídeo Sintases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Glutamina/química , Piperidonas/químicaRESUMO
BACKGROUND: Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment. RESULTS: Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L. CONCLUSIONS: This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
Assuntos
Engenharia Metabólica/métodos , Peptídeo Sintases/síntese química , Piperidonas/síntese química , Saccharomyces cerevisiae/metabolismoRESUMO
4'-Phosphopantetheinyl transferases (PPTases) play an essential role in activating the carrier protein domains of mega-synthases involved in primary and secondary metabolism and have been validated as promising drug targets in multiple pathogens. Monitoring phosphopantetheinylation of the non-ribosomal peptidase synthetase BpsA, which produces blue indigoidine pigment upon activation, is a useful strategy to screen chemical collections for inhibitors of a target PPTase. However, PPTases can exhibit carrier protein specificity and some medically important PPTases do not activate BpsA. Here, we describe how to conduct a directed evolution campaign to evolve the BpsA carrier protein domain for improved recognition by a candidate PPTase, as exemplified for the human Sfp-like PPTase. This method can be applied to other non-cognate PPTases for discovery of new drug candidates or chemical probes, or to enable development of next-generation biosensors that utilize BpsA as a reporter.
Assuntos
Proteínas de Transporte , Transferases , Humanos , Proteínas de Transporte/metabolismo , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Photosynthetic dinoflagellates synthesize many toxic but also potential therapeutic compounds therapeutics via polyketide/non-ribosomal peptide synthesis, a common means of producing natural products in bacteria and fungi. Although canonical genes are identifiable in dinoflagellate transcriptomes, the biosynthetic pathways are obfuscated by high copy numbers and fractured synteny. This study focuses on the carrier domains that scaffold natural product synthesis (thiolation domains) and the phosphopantetheinyl transferases (PPTases) that thiolate these carriers. We replaced the thiolation domain of the indigoidine producing BpsA gene from Streptomyces lavendulae with those of three multidomain dinoflagellate transcripts and coexpressed these constructs with each of three dinoflagellate PPTases looking for specific pairings that would identify distinct pathways. Surprisingly, all three PPTases were able to activate all the thiolation domains from one transcript, although with differing levels of indigoidine produced, demonstrating an unusual lack of specificity. Unfortunately, constructs with the remaining thiolation domains produced almost no indigoidine and the thiolation domain for lipid synthesis could not be expressed in E. coli. These results combined with inconsistent protein expression for different PPTase/thiolation domain pairings present technical hurdles for future work. Despite these challenges, expression of catalytically active dinoflagellate proteins in E. coli is a novel and useful tool going forward.
RESUMO
Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic assembly lines where substrates and intermediates undergo rounds of transformation catalyzed by adenylation (A), condensation (C), and thioesterase (TE) domains. Central to the NRPS biosynthesis are peptidyl carrier protein (PCP) domains, small, catalytically inactive domains that shuttle substrates and intermediates between the catalytic modules and govern product release from TE domains. There is strong interest in recombination of NRPS systems to generate new chemical entities. However, the intrinsic complexity of these systems has been a major challenge. Here, we employ domain substitution and random mutagenesis to recapitulate NRPS evolution, focusing on PCP domains. Using NRPS model systems that produce two different pigmented molecules, pyoverdine and indigoidine, we found that only evolutionarily specialized recombinant PCP domains could interact effectively with the native TE domain for product release. Overall, we highlight that substituted PCP domains require very minor changes to result in functional NRPSs, and infer that positive selection pressure may improve recombinant NRPS outcomes.