Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 294: 120646, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750907

RESUMO

Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/fisiologia , Idoso , Movimentos da Cabeça/fisiologia , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Adolescente
2.
Sci Rep ; 14(1): 11185, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755275

RESUMO

The brain presents age-related structural and functional changes in the human life, with different extends between subjects and groups. Brain age prediction can be used to evaluate the development and aging of human brain, as well as providing valuable information for neurodevelopment and disease diagnosis. Many contributions have been made for this purpose, resorting to different machine learning methods. To solve this task and reduce memory resource consumption, we develop a mini architecture of only 10 layers by modifying the deep residual neural network (ResNet), named ResNet mini architecture. To support the ResNet mini architecture in brain age prediction, the brain age dataset (OpenNeuro #ds000228) that consists of 155 study participants (three classes) and the Alzheimer MRI preprocessed dataset that consists of 6400 images (four classes) are employed. We compared the performance of the ResNet mini architecture with other popular networks using the two considered datasets. Experimental results show that the proposed architecture exhibits generality and robustness with high accuracy and less parameter number.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Aprendizado Profundo , Idoso , Doença de Alzheimer/diagnóstico por imagem , Aprendizado de Máquina , Feminino , Idoso de 80 Anos ou mais , Masculino , Pessoa de Meia-Idade
3.
Bioengineering (Basel) ; 11(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534539

RESUMO

Convolutional neural networks (CNNs) have been used widely to predict biological brain age based on brain magnetic resonance (MR) images. However, CNNs focus mainly on spatially local features and their aggregates and barely on the connective information between distant regions. To overcome this issue, we propose a novel multi-hop graph attention (MGA) module that exploits both the local and global connections of image features when combined with CNNs. After insertion between convolutional layers, MGA first converts the convolution-derived feature map into graph-structured data by using patch embedding and embedding-distance-based scoring. Multi-hop connections between the graph nodes are modeled by using the Markov chain process. After performing multi-hop graph attention, MGA re-converts the graph into an updated feature map and transfers it to the next convolutional layer. We combined the MGA module with sSE (spatial squeeze and excitation)-ResNet18 for our final prediction model (MGA-sSE-ResNet18) and performed various hyperparameter evaluations to identify the optimal parameter combinations. With 2788 three-dimensional T1-weighted MR images of healthy subjects, we verified the effectiveness of MGA-sSE-ResNet18 with comparisons to four established, general-purpose CNNs and two representative brain age prediction models. The proposed model yielded an optimal performance with a mean absolute error of 2.822 years and Pearson's correlation coefficient (PCC) of 0.968, demonstrating the potential of the MGA module to improve the accuracy of brain age prediction.

4.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061729

RESUMO

The intricate dynamics of brain aging, especially the neurodegenerative mechanisms driving accelerated (ABA) and resilient brain aging (RBA), are pivotal in neuroscience. Understanding the temporal dynamics of these phenotypes is crucial for identifying vulnerabilities to cognitive decline and neurodegenerative diseases. Currently, there is a lack of comprehensive understanding of the temporal dynamics and neuroimaging biomarkers linked to ABA and RBA. This study addressed this gap by utilizing a large-scale UK Biobank (UKB) cohort, with the aim to elucidate brain aging heterogeneity and establish the foundation for targeted interventions. Employing Lasso regression on multimodal neuroimaging data, structural MRI (sMRI), diffusion MRI (dMRI), and resting-state functional MRI (rsfMRI), we predicted the brain age and classified individuals into ABA and RBA cohorts. Our findings identified 1949 subjects (6.2%) as representative of the ABA subpopulation and 3203 subjects (10.1%) as representative of the RBA subpopulation. Additionally, the Discriminative Event-Based Model (DEBM) was applied to estimate the sequence of biomarker changes across aging trajectories. Our analysis unveiled distinct central ordering patterns between the ABA and RBA cohorts, with profound implications for understanding cognitive decline and vulnerability to neurodegenerative disorders. Specifically, the ABA cohort exhibited early degeneration in four functional networks and two cognitive domains, with cortical thinning initially observed in the right hemisphere, followed by the temporal lobe. In contrast, the RBA cohort demonstrated initial degeneration in the three functional networks, with cortical thinning predominantly in the left hemisphere and white matter microstructural degeneration occurring at more advanced stages. The detailed aging progression timeline constructed through our DEBM analysis positioned subjects according to their estimated stage of aging, offering a nuanced view of the aging brain's alterations. This study holds promise for the development of targeted interventions aimed at mitigating age-related cognitive decline.

5.
Brain Sci ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672050

RESUMO

The morphology of the brain undergoes changes throughout the aging process, and accurately predicting a person's brain age and gender using brain morphology features can aid in detecting atypical brain patterns. Neuroimaging-based estimation of brain age is commonly used to assess an individual's brain health relative to a typical aging trajectory, while accurately classifying gender from neuroimaging data offers valuable insights into the inherent neurological differences between males and females. In this study, we aimed to compare the efficacy of classical machine learning models with that of a quantum machine learning method called a variational quantum circuit in estimating brain age and predicting gender based on structural magnetic resonance imaging data. We evaluated six classical machine learning models alongside a quantum machine learning model using both combined and sub-datasets, which included data from both in-house collections and public sources. The total number of participants was 1157, ranging from ages 14 to 89, with a gender distribution of 607 males and 550 females. Performance evaluation was conducted within each dataset using training and testing sets. The variational quantum circuit model generally demonstrated superior performance in estimating brain age and gender classification compared to classical machine learning algorithms when using the combined dataset. Additionally, in benchmark sub-datasets, our approach exhibited better performance compared to previous studies that utilized the same dataset for brain age prediction. Thus, our results suggest that variational quantum algorithms demonstrate comparable effectiveness to classical machine learning algorithms for both brain age and gender prediction, potentially offering reduced error and improved accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA