Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecotoxicol Environ Saf ; 263: 115214, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413944

RESUMO

Brassica campestris L., a cadmium (Cd) hyperaccumulating herbaceous plant, is considered as a promising candidate for the bioremediation of Cd pollution. However, the molecular mechanisms regulating these processes remain unclear. The present work, using proteome studies combined with a transcriptome analysis, was carried out to reveal the response mechanisms of the hairy roots of Brassica campestris L. under Cd stress. Significant tissue necrosis and cellular damage occurred, and Cd accumulation was observed in the cell walls and vacuoles of the hairy roots. Through quantitative proteomic profiling, a total of 1424 differentially expressed proteins (DEPs) were identified, and are known to be enriched in processes including phenylalanine metabolism, plant hormone signal transduction, cysteine and methionine metabolism, protein export, isoquinoline alkaloid biosynthesis and flavone biosynthesis. Further studies combined with a transcriptome analysis found that 118 differentially expressed genes (DEGs) and their corresponding proteins were simultaneously up- or downregulated. Further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the 118 shared DEGs and DEPs indicated their involvement in calcium, ROS and hormone signaling-mediated response, including regulation of carbohydrate and energy metabolism, biosynthesis of GSH, PCs and phenylpropanoid compounds that play vital roles in the Cd tolerance of Brassica campestris L. Our findings contribute to a better understanding of the regulatory networks of Brassica campestris L. under Cd stress, as well as provide valuable information on candidate genes (e.g., BrPAL, BrTAT, Br4CL, BrCDPK, BrRBOH, BrCALM, BrABCG1/2, BrVIP, BrGCLC, BrilvE, BrGST12/13/25). These results are of particular importance to the subsequent development of promising transgenic plants that will hyperaccumulate heavy metals and efficient phytoremediation processes.


Assuntos
Brassica , Cádmio , Cádmio/toxicidade , Cádmio/metabolismo , Brassica/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos , Redes e Vias Metabólicas/genética , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Int J Phytoremediation ; 25(11): 1455-1462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597829

RESUMO

Cadmium (Cd) is the main heavy metal pollutant in soil. The combination of genetic engineering technology and Rizobium rhizogenes mediated technology can effectively improve the enrichment efficiency of heavy metals in super accumulators and reduce soil heavy metal pollution. In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the R. rhizogenes mediated method (IRT1 gene come from Arabidopsis thaliana). The hairy roots of each subculture can grow stably within 6 weeks, and IRT1 gene will not be lost within 50 subcultures., which is detected using PCR method. The results of Cd enrichment experiments showed that after treatment with 100 µmol/L Cd for 14 days, the growth state of transgenic IRT1 hairy roots only showed slight browning. Also, the accumulation value of Cd reached 331.61 µg/g and the enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. Western blotting results showed that the expression of IRT1 protein in transgenic hairy roots was significantly higher than that of wild-type hairy roots under Cd stress. The above results indicated that the overexpression of IRT1 gene can help B. campestris L. hairy roots to effectively cope with Cd stress and improve its ability to enrich Cd.


In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the Rizobium rhizogenes mediated method. At the same time, the growth state and cadmium enrichment efficiency of transgenic hairy roots under different concentrations of Cd stress were studied. Overexpression of IRT1 gene can effectively improve the tolerance of hairy root to Cd. The enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. The transgenic IRT1 hairy root system established in this study can be used as a reliable experimental model for the study of Cd adsorption mechanism, and can be further regenerated to obtain transgenic IRT1 B. campestris L. plants for the study of heavy metal Cd pollution remediation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Proteínas de Transporte de Cátions , Brassica/genética , Brassica/metabolismo , Cádmio/metabolismo , Biodegradação Ambiental , Arabidopsis/genética , Arabidopsis/metabolismo , Solo , Raízes de Plantas , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902245

RESUMO

Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and ß-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.


Assuntos
Brassica , Açúcares , Açúcares/metabolismo , Brassica/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Metaboloma , Regulação da Expressão Gênica de Plantas
4.
J Environ Manage ; 330: 117227, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623389

RESUMO

In the present study, CaFe-layered double hydroxide corn straw biochar (CaFe-LDH@CSB) was applied to the rhizosphere soil of both pakchoi (Brassica campestris L. ssp. Chinensis Makino, B. campestris L.) and water spinach (Ipomoea aquatic F., I. aquatic F.) to explore and clarify the potential mechanism by which CaFe-LDH@CSB helps vegetables reduce heavy metal (HM) uptake and alleviate oxidative stress. Pot experiments were conducted with CaFe-LDH@CSB applied at four levels: control (CK), T1 (5 g kg-1), T2 (10 g kg-1) and T3 (20 g kg-1). The results indicated that the application of CaFe-LDH@CSB significantly increased pH and decreased the acid-soluble forms of Cd, Pb, Zn and Cu in the rhizosphere soil of both B. campestris L. and I. aquatic F.; decreases of 39.4%, 18.0%, 10.0% and 33.3% in B. campestris L. and of 26.6%, 49.1%, 13.2% and 36.8% in I. aquatic F., respectively, were observed at the T3 level. Moreover, CaFe-LDH@CSB application reduced HM uptake by B. campestris L. and decreased HM-induced oxidative stress through the regulation of soil physicochemical properties and microbial abundance. For B. campestris L., variations in Sordariomycetes helped alleviate the accumulation of HMs in the aerial part, while GSH and -SH from the nonenzymatic system played an important role in scavenging H2O2 in leaves, thus helping B. campestris L. alleviate HM-induced oxidative stress. For I. aquatica F., variations in Vicinamibacteria and Mortierellomycetes helped alleviate the accumulation of HMs in plants, while GSH and PCs from nonenzymatic systems played an important role in removing ·O2- in leaves, thereby helping I. aquatica F. alleviate HM-induced oxidation stress. Our study indicated that the application of CaFe-LDH@CSB improved the rhizosphere soil environment and rebuilt the soil microbial community, helping B. campestris L. and I. aquatica F. alleviate HM-induced oxidative stress and promoting the growth of both vegetables.


Assuntos
Brassica , Ipomoea , Metais Pesados , Poluentes do Solo , Brassica/química , Zea mays , Cádmio/farmacologia , Rizosfera , Peróxido de Hidrogênio , Metais Pesados/análise , Estresse Oxidativo , Solo/química , Verduras , Poluentes do Solo/análise
5.
J Cell Mol Med ; 26(14): 3891-3901, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35686492

RESUMO

Acute or repetitive exposure to ultraviolet (UV) cause disruptions to the skin barrier and subsequent inflammatory skin disease. 4-phenylpyridine (4-PP) is a constituent of Brassica campestris L. ssp. Pekinensis and its effect on skin inflammation and molecular target remain unclear. The purpose of this study is to confirm the anti-inflammatory efficacy of 4-PP on UVB-induced skin inflammation in human keratinocytes HaCaT and mouse skin and validation of its molecular target. 4-PP also attenuated UVB-induced phosphorylation of p38/mitogen-activated protein kinase kinase (MKK) 3/6, c-Jun N-terminal kinase 1/2, MKK 4/7, extracellular-signal-regulated kinase 1/2, mitogen-activated protein kinase 1/2. Additionally, 4-PP inhibited UVB-induced phosphorylation of epidermal growth factor receptor (EGFR) Y1068, Y1045 and 854 residues but not the proto-oncogene tyrosine-protein kinase c-Src. Drug affinity responsive target stability assay revealed that 4-PP directly binds to c-Src and inhibits pronase c-proteolysis. Knockdown of c-Src inhibited UVB-induced COX-2 expression and phosphorylation of MAPKs and EGFR in HaCaT cells. Dorsal treatment of 4-PP prevented UVB (0.5 J/cm2 )-induced skin thickness, phosphorylation of EGFR and COX-2 expression in mouse skin. Our findings suggest that 4-PP can be used as anti-inflammatory agent with an effect of skin inflammation by inhibiting the COX-2 expression via suppressing the c-Src/EGFR/MAPKs signalling pathway.


Assuntos
Dermatite , Raios Ultravioleta , Animais , Ciclo-Oxigenase 2/metabolismo , Dermatite/tratamento farmacológico , Dermatite/etiologia , Receptores ErbB/metabolismo , Humanos , Inflamação/metabolismo , Queratinócitos/metabolismo , Camundongos , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Piridinas , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
6.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682691

RESUMO

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is one of the most popular vegetables in China. However, the loss of the functional ingredients in postharvest flowering Chinese cabbage during storage is still serious, owing to the unclear causes of the metabolic shifts. Herein, benzoic acid, chlorine dioxide, and 1-methylcyclopropene (1-MCP) could maintain the quality of postharvest flowering Chinese cabbage, and 1-MCP showed the best effect. Furthermore, transcript-metabolite profiling of the treatments revealed a transcript-metabolite correlation network of the flavonoid biosynthesis pathways with a range of 3 to 3662 differentially expressed genes (DEGs) and a range of 23 to 37 differentially accumulated metabolites (DAMs). Surprisingly, 1-MCP had the best effect on shelf life among the treatments, although chlorine dioxide could stimulate the expression of four critical differential genes (Bra007142, Bra008792, Bra009358, and Bra027457) involved in delaying flavonoid degradation (hesperetin, chalcone, rutin, baicalein). As a result, our findings will help to improve our understanding of the regulation of flavonoid production in relation to the quality of postharvest flowering Chinese cabbage during storage.


Assuntos
Brassica , Flavonoides , Ácido Benzoico , Brassica/genética , Compostos Clorados , Ciclopropanos , Flavonoides/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas , Óxidos
7.
BMC Genomics ; 22(1): 258, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845769

RESUMO

BACKGROUND: Leaf color mutants are the ideal materials to explore the pathways of chlorophyll (Chl) metabolism, chloroplast development, and photosynthesis system. In this study, a spontaneous yellow-green leaf wucai (Brassica campestris L.) mutant "WY16-13" was identified, which exhibited yellow-green leaf color during its entire growth period. However, current understanding of the molecular mechanism underlying Chl metabolism and chloroplast development of "WY16-13" is limited. RESULTS: Total Chl and carotenoid content in WY16-13 was reduced by 60.92 and 58.82%, respectively, as compared with its wild type parental line W16-13. Electron microscopic investigation revealed fewer chloroplasts per cell and looser stroma lamellae in WY16-13 than in W16-13. A comparative transcriptome profiling was performed using leaves from the yellow-green leaf type (WY16-13) and normal green-leaf type (W16-13). A total of 54.12 million (M) (WY16-13) and 56.17 M (W16-13) reads were generated. A total of 40,578 genes were identified from the mapped libraries. We identified 3882 differentially expressed genes (DEGs) in WY16-13 compared with W16-13 (i.e., 1603 upregulated genes and 2279 downregulated genes). According to the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, these DEGs are involved in porphyrin and Chl metabolism [i.e., chlorophyllase (CLH), heme oxygenase (HO), chlorophyll (ide) b reductase (NYC), and protochlorophyllide oxidoreductase (POR) genes], carbohydrate metabolism, photosynthesis, and carbon fixation in photosynthetic organisms. Moreover, deficiency in Chl biosynthetic intermediates in WY16-13 revealed that the formation of the yellow-green phenotype was related to the disorder of heme metabolism. CONCLUSIONS: Our results provide valuable insights into Chl deficiency in the yellow-green leaf mutant and a bioinformatics resource for further functional identification of key allelic genes responsible for differences in Chl content.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Clorofila , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
8.
Ecotoxicol Environ Saf ; 206: 111150, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32853871

RESUMO

The speciation and activity of heavy metals in farmland were changed with the different soil properties and flooded environment, especially in the complex and rainy environment in soil of Guizhou Province. The objective of this study was to explore the concentrations of a variety of heavy metal activity and the speciation of those heavy metals in rhizosphere soil at different growth stages of Brassica campestris L. in a Karst mountainous area. Tessier's five-stage sequential extraction procedure, the potential ecological risk index, a Bayesian network, accumulation factors, translocation factors and a laboratory simulation experiment were applied in this study. The results showed that (1) no heavy metal concentrations (except the Cd concentration) exceeded the limits of the soil environmental quality risk control standards for soil contamination of agricultural land in China (GB15618-2018). (2) The orders of the accumulation factor and translocation factor values were Zn > Cd > Cu > Pb > Cr and Cd > Cu > Zn > Pb > Cr, respectively. The order of the heavy metal contents of different tissues during the whole growth period was roots > leaves > stems. (3) The indoor simulation test exhibited that the dry-wet alternation and flooding can reduce Cd activity in soil. (4) Redox potential (Eh), rather than pH or organic matter, was the main factor impacting the total content and chemical speciation of heavy metals in the soil, based on a dynamic Bayesian network. Based on the results, we suggest that the activity of heavy metals should be improved by using dry-wet alternation, whereas the proportions of ion-exchangeable forms of heavy metals are relatively low in the study area (except for Cd). Several measures may be taken to enhance soil acidity and reduce the Cd activity during Brassica campestris L. cultivation.


Assuntos
Brassica/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Teorema de Bayes , China , Monitoramento Ambiental , Poluição Ambiental/análise , Fazendas , Metais Pesados/análise , Rizosfera , Medição de Risco , Solo/química , Poluentes do Solo/análise
9.
Biotechnol Lett ; 41(11): 1343-1354, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583497

RESUMO

OBJECTIVE: The available content of mercury (Hg) in farmland soil is directly related to the safety of agricultural products. Meanwhile, humans may accumulate high concentrations of Hg through the food chain, resulting in health damage. Regarding the remediation technologies of Hg-contaminated soil, research and development is mainly concentrated on the immobilisation of Hg in soil and efficient extraction by accumulators. Therefore, in this work, the highly Hg-tolerant strain Pseudomonas alkylphenolica KL28 was used to study the removal effect of Hg in a solution, immobilization effect of Hg in soil, and its effect on growth, Hg accumulation and photosynthetic characteristics of Brassica campestris L. RESULTS: KL28 could effectively remove Hg2+ in the solution, with the removal ratio of 96.0% at 24 h. This strain could reduce decreases in shoots' and roots' dry weights by 31% and 16%, respectively, at a Hg concentration of 20 mg/L. The available Hg in the soil decreased to 4.7-9.4% in 8 days treated with KL28 bacterial solution at a dosage of 100 L/hm2. Meanwhile, with increases in Hg concentrations, Fv/Fm, Y(II), Y(I) and Y(NPQ) in the leaves of B. campestris showed a downward trend while Y(ND) and Y(NO) displayed an upward trend. Under the stress of 20 mg/L Hg2+, KL28 could reduce the Fv/Fm from 11.2 to 6.1%. CONCLUSIONS: KL28 could effectively remove Hg in the solution, immobilize Hg in soil, promote growth, decrease Hg accumulation and affect photosynthetic characteristics of B. campestris, indicating its potential use in Hg contaminated soils.


Assuntos
Brassica/química , Mercúrio , Pseudomonas , Poluentes do Solo , Biodegradação Ambiental , Brassica/crescimento & desenvolvimento , Brassica/microbiologia , Mercúrio/isolamento & purificação , Mercúrio/metabolismo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudomonas/química , Pseudomonas/metabolismo , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo
10.
Ecotoxicol Environ Saf ; 173: 314-321, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30784794

RESUMO

Excessive chromium (Cr) causes toxicity to plants, while the beneficial effects of selenium (Se) have been verified in plants under various adverse conditions. Under Cr stress, the impacts of exogenous Se on root morphology and metal element uptake were investigated in root of Chinese cabbage by cellular and biochemical approaches. Exogenous Se alleviated Cr-induced irreversible damage to root morphology, plasma membrane integrity and ultrastructure of root tip cells. Compared with Cr treatment alone, exogenous Se reduced root Cr content by 17%. Se supply changed the subcellular distribution of Cr in root, and the concentration of Cr was reduced in the fractions of plastids and mitochondria, while increased in soluble fraction. Besides, exogenous Se counteracted the nutrient elements (Na, Ca, Fe, Mn, Cu and Zn) loss induced by Cr. For plant with Se pretreatment, the increase rate of Cr influx was lower than that of plant without Se pretreatment, particularly in solution containing high concentration (100-400 µmol L-1) of Cr. In addition, higher Km value was observed in plant with Se pretreatment, which indicated a lower Cr affinity than that of plant without Se pretreatment. The results suggest that Se modified root morphology and regulated nutrient elements uptake by root, which might play a combined role in reducing Cr uptake by root, consequently alleviating Cr stress and maintaining plant growth.


Assuntos
Brassica/efeitos dos fármacos , Cromo/efeitos adversos , Raízes de Plantas/efeitos dos fármacos , Selênio/metabolismo , Poluentes do Solo/efeitos adversos , Transporte Biológico , Brassica/anatomia & histologia , Brassica/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Selênio/administração & dosagem
11.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888010

RESUMO

Brassica campestris L., a hyperaccumulator of cadmium (Cd), is considered a candidate plant for efficient phytoremediation. The hairy roots of Brassica campestris L are chosen here as a model plant system to investigate the response mechanism of Brassica campestris L. to Cd stress. High-throughput sequencing technology is used to identify genes related to Cd tolerance. A total of 2394 differentially expressed genes (DEGs) are identified by RNA-Seq analysis, among which 1564 genes are up-regulated, and 830 genes are down-regulated. Data from the gene ontology (GO) analysis indicate that DEGs are mainly involved in metabolic processes. Glutathione metabolism, in which glutathione synthetase and glutathione S-transferase are closely related to Cd stress, is identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A Western blot shows that glutathione synthetase and glutathione S-transferase are involved in Cd tolerance. These results provide a preliminary understanding of the Cd tolerance mechanism of Brassica campestris L. and are, hence, of particular importance to the future development of an efficient phytoremediation process based on hairy root cultures, genetic modification, and the subsequent regeneration of the whole plant.


Assuntos
Brassica/crescimento & desenvolvimento , Cádmio/farmacologia , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Biodegradação Ambiental , Brassica/efeitos dos fármacos , Brassica/genética , Regulação da Expressão Gênica de Plantas , Glutationa Sintase/genética , Glutationa Transferase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
12.
BMC Genomics ; 18(1): 288, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399809

RESUMO

BACKGROUND: The accumulation of anthocyanin in horticultural crops not only improves their stress tolerances but also their nutritional values. Many key regulatory and structural genes in anthocyanin biosynthesis have been identified in model plants, but limited information is available for non-model plant species featured with colored leaves. In this study, two Pak Choi varieties with green or purple leaves were selected to analyze the anthocyanin biosynthesis through RNA-Seq. RESULTS: A total of 2475 unigenes were differentially expressed between these tested varieties, including 1303 down-regulated and 1172 up-regulated genes in the purple-leafed one. The reliability of the RNA-Seq was further confirmed by using real-time quantitative PCR. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes revealed 'flavonoid biosynthesis' was the only enriched pathway in the purple-leafed variety: In the pathway of phenylpropanoid metabolism, Bra017210, Bra039777, and Bra021637 were expressed at higher levels in the purple-leafed variety; among the early anthocyanin biosynthetic genes, Bra037747 transcripts were only detected in the purple-leafed variety but not in the green-leafed one; among the late anthocyanin biosynthetic genes, Bra027457, Bra013652, Bra019350, Bra003021, Bra035004, and Bra038445 were all up-regulated in purple-leafed variety; and genes encoding anthocyanin-related transcription factors, such as Bra016164, and genes encoding anthocyanin transportation, such as GST F12, were also identified as up-regulated ones in the purple-leafed variety. CONCLUSIONS: The current result provided a valuable insight into the anthocyanin accumulation in the purple-leafed variety of Pak Choi and a bioinformatic resource for further functional identification of key allelic genes determining the difference of anthocyanin content between Pak Choi varieties.


Assuntos
Antocianinas/metabolismo , Vias Biossintéticas/genética , Brassica/genética , Brassica/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Antocianinas/biossíntese , Biologia Computacional/métodos , Ontologia Genética , Genes Reguladores , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Característica Quantitativa Herdável
13.
Mol Genet Genomics ; 292(5): 967-990, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28492984

RESUMO

We studied the underlying causes of multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by identifying differentially expressed genes (DEGs) related to pollen sterility between fertile and sterile flower buds. In this work, we verified the stages of sterility microscopically and then performed transcriptome analysis of mRNA isolated from fertile and sterile buds using Illumina HiSeq 2000 platform sequencing. Approximately 80% of ~229 million high-quality paired-end reads were uniquely mapped to the reference genome. In sterile buds, 699 genes were significantly up-regulated and 4096 genes were down-regulated. Among the DEGs, 28 pollen cell wall-related genes, 54 transcription factor genes, 45 phytohormone-related genes, 20 anther and pollen-related genes, 212 specifically expressed transcripts, and 417 DEGs located on linkage group A07 were identified. Six transcription factor genes BrAMS, BrMS1, BrbHLH089, BrbHLH091, BrAtMYB103, and BrANAC025 were identified as putative sterility-related genes. The weak auxin signal that is regulated by BrABP1 may be one of the key factors causing pollen sterility observed here. Moreover, several significantly enriched GO terms such as "cell wall organization or biogenesis" (GO:0071554), "intrinsic to membrane" (GO:0031224), "integral to membrane" (GO:0016021), "hydrolase activity, acting on ester bonds" (GO:0016788), and one significantly enriched pathway "starch and sucrose metabolism" (ath00500) were identified in this work. qRT-PCR, PCR, and in situ hybridization experiments validated our RNA-seq transcriptome analysis as accurate and reliable. This study will lay the foundation for elucidating the molecular mechanism(s) that underly sterility and provide valuable information for studying multiple-allele-inherited male sterility in the Chinese cabbage line 'AB01'.


Assuntos
Brassica/genética , Flores/genética , Infertilidade das Plantas/genética , Pólen/genética , Alelos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Transcriptoma/genética
14.
Ecotoxicol Environ Saf ; 114: 179-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25638524

RESUMO

The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.


Assuntos
Brassica/efeitos dos fármacos , Cromo/toxicidade , Poluentes Ambientais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Antioxidantes/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Brassica/ultraestrutura , Relação Dose-Resposta a Droga , Peróxidos Lipídicos/metabolismo , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
15.
Breed Sci ; 64(2): 149-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24987301

RESUMO

To produce hybrid seeds of Wutacai (Brassica campestris L. ssp. chinensis (L.) Makino var. rosularis Tsen et Lee), a "directional transfer program" was designed to breed the multiple-allele male sterile line of Wutacai. A multiple-allele male sterile line of Naibaicai (Brassica campestris L. ssp. chinensis L., S01) was used as the male sterile resource, and an inbred line of Wutacai (WT01) was used as the target line. Recurrent backcrossing was employed to transfer the male sterility and other botanical traits simultaneously, while the genotype was identifiedthrough test crossing. The male sterility was successfully transferred from S01 to WT01. A new male sterile line, GMS-3, with similar botanical traits to WT01, was bred. Four hybrid combinations were generated with GMS-3 as the female parent. One hybrid (C1) that contained the most desirable traits was developed from the new male sterile line.

16.
Environ Sci Pollut Res Int ; 30(4): 9471-9482, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36057704

RESUMO

In the past decades, chromium contamination of agricultural land has become an emerging concern. For land reclamation, several strategies including bioremediation have been used. Owing the potential of hyperaccumulators, the current project aims to enhance the phytoremediation potential of Brassica campestris L. with the application of chromate tolerant endophytic fungus Aspergillus niger CSR3. when B. campestris was watered with chromate concentration (300, 500, and 1000 ppm) in the form of potassium chromate (K2CrO4), seed germination, hypocotyl length, root shoot length, and leaf area were severely reduced (p < 0.05). However, reproductive parts of the plants remained viable once initiated. Inoculation of the selected endophyte stimulated host growth, reducing the severity of the chromate stress. Interestingly, CSR3-inoculated plants accumulated 1.82-, 1.51-, and 2.16-fold greater quantities of chromate than the un-inoculated plants. To cope better with the stress, endophyte-associated host had stronger antioxidant system supported by enhanced production of nonenzymatic antioxidants (flavonoids, phenolics, and proline) and enzymatic antioxidants (SOD, CAT, APX, and POD) than the non-endophytes host plants. It may be concluded that hyperaccumulator B. campestris accumulates even higher quantities of chromate in the presence of endophytic A. niger CSR3 and tolerates elevated levels of chromate with boosted antioxidant system. Thus, hyperaccumulator host associated with heavy metal tolerant endophytic fungi can be the possible efficient way to reclaim the contaminated site from the heavy metals effectively in a short time period.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Antioxidantes , Aspergillus niger , Biodegradação Ambiental , Cromatos , Solo , Metais Pesados/análise , Endófitos , Poluentes do Solo/análise
17.
Microorganisms ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36838291

RESUMO

Oilseed rape is sensitive to soil phosphorus deficiencies. In contrast, white lupin is widely used as a model plant because it has efficient phosphorus utilization. Therefore, soil fertility and microbial composition in the rhizospheres of oilseed rapes and root exudate metabolites were compared under monocropping and intercropping systems. The main purpose was to explore whether the phosphorus absorption of rapeseed can be promoted by intercropping with white lupine. In comparison with oilseed rape monoculture (RR), the results showed that the contents of soil-available phosphorus, microbial biomass and phosphorus in the rhizospheres of oilseed rapes in the intercropping system (RL) were all higher than those of RR. Meanwhile, in comparison with RR, not only phosphorus-solubilizing bacteria, such as Streptomyces, Actinomadura and Bacillus, but also phosphorus-solubilizing fungi, such as Chaetomium, Aspergillus, Penicillium, were enriched in the rhizospheres of the oilseed rape under the RL system. Moreover, more abundant soil bacterial functions, organic acids and metabolites were also detected in root exudates of the oilseed rapes under the RL system. All of the above results suggest that soil phosphorus availability in the rhizospheres of oilseed rape could be improved by intercropping with white lupin. Additionally, soil phosphorus-solubilizing microorganisms, that are enriched in the rhizospheres of oilseed rapes under RL systems, have an important function in the improvement of phosphorus absorption of rapeseed by intercropping with white lupin.

18.
Huan Jing Ke Xue ; 43(11): 5234-5243, 2022 Nov 08.
Artigo em Zh | MEDLINE | ID: mdl-36437095

RESUMO

The interaction between different elements is an efficient means to control the heavy metal accumulation in crops. Phosphorus (P) and zinc (Zn), as essential nutrient elements of plants, have been shown to have important impacts on cadmium (Cd) accumulation in crops through interactions with each other. However, the function of the simultaneous interaction of P, Zn, and Cd on vegetable growth and Cd accumulation remains unclear. Herein, using a single-factor level design with two alternating fixed factors, pot experiments were conducted to study the impact and mechanism of this simultaneous interaction at different levels of P, Zn, and Cd on Brassica campestris L. growth, antioxidant enzyme activity, and Zn and Cd accumulation with neutral purple soil as the substrate. The results showed that the addition of an appropriate amount of P and Zn could promote the growth of Brassica campestris L. and inhibit its Cd accumulation, through different mechanisms. P mainly reduced the Cd availability in soil and improved the crop resistance, whereas Zn mainly promoted the dilution effect by the crop growth and its physiological antagonism. The antioxidant capacity of Brassica campestris L. was significantly inhibited when 1 mg·kg-1 exogenous Cd was added to the soil, along with decreased activities of CAT and POD and high accumulation of MDA. Notably, both P and Zn could improve the antioxidant capacity and relieve Cd toxicity by increasing CAT activity, without obviously influencing POD activity. The highest yield of Brassica campestris L. (55.72 g·pot-1) was attained when the ratio of stress concentration for exogenous P, Zn, and Cd[ω(Cd):ω(Zn):ω(P)] was 1:10:200. Furthermore, the Cd content in the edible part was also lower than the national standard requirement of 50 µg·kg-1for Cd in green leafy vegetables (GB 2762-2017). In addition, the accumulation of Cd was further decreased when the proportion of P and Zn was increased, along with a decreased yield of the vegetable. Therefore, a proper application of P and Zn fertilizers could simultaneously reduce Cd accumulation and increase crop yield and thus contribute to achieving safe vegetable production.


Assuntos
Brassica , Poluentes do Solo , Cádmio/análise , Zinco/farmacologia , Zinco/química , Antioxidantes/farmacologia , Poluentes do Solo/análise , Solo , Verduras
19.
Front Plant Sci ; 13: 1014396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589099

RESUMO

Uniconazole, a triazole plant growth regulator, is widely used to regulate plant height and prevent the overgrowth of seedlings. However, the underlying molecular mechanism of uniconazole in inhibiting the hypocotyl elongation of seedlings is still largely unclear, and there has been little research on the integration of transcriptomic and metabolomic data to investigate the mechanisms of hypocotyl elonga-tion. Herein we observed that the hypocotyl elongation of flowering Chinese cabbage seedings was significantly inhibited by uniconazole. Interestingly, based on combined transcriptome and metabolome analyses, we found that the "phenylpropanoid biosynthesis" pathway was significantly affected by uniconazole. In this pathway, only one member of the portal enzyme gene family, named BrPAL4, was remarkably downregulated, which was related to lignin biosynthesis. Furthermore, the yeast one-hybrid and dual-luciferase assays showed that BrbZIP39 could directly bind to the promoter region of BrPAL4 and activate its transcript. The virus-induced gene silencing system further demonstrated that BrbZIP39 could positively regulate hypocotyl elongation and the lignin biosynthesis of hypocotyl. Our findings provide a novel insight into the molecular regulatory mechanism of uniconazole inhibiting hypocotyl elongation in flowering Chinese cabbage and confirm, for the first time, that uniconazole decreases lignin content through repressing the BrbZIP39-BrPAL4 module-mediated phenylpropanoid biosynthesis, which leads to the hypocotyl dwarfing of flowering Chinese cabbage seedlings.

20.
Food Sci Nutr ; 9(3): 1323-1335, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747448

RESUMO

The quality of green leafy vegetables is easily lost during the postharvest period. The effect of exogenous 24-epibrassinolide (EBR) pretreatment on the quality of wucai was evaluated in the present study. Wucai plants were sprayed twice with 0.1 µM EBR before harvesting. Two storage temperatures were tested: 25°C and 4°C. At 4°C, EBR pretreatment significantly delayed the degradation of the pigment and plant water loss. Furthermore, we measured the activity of key enzymes of the ascorbic acid (AsA)-glutathione (GSH) cycle, the content of the main metabolites, and the expression of the AsA metabolism-related genes in leaves. The results indicated that all three plants showed stronger antioxidant capacity after EBR pretreatment. At 4°C and 25°C, the storage time of wucai was 20 days and 7 days after EBR treatment, while the samples could be stored for 14 days and 4 days without EBR treatment application, respectively. At 4°C, the nutritional properties of wucai pretreated with EBR, such as total free amino acids, total soluble sugar, and cellulose contents, were higher than those of the control, while the content of nitrite and lignin was lower than that of the control. Hence, EBR pretreatment was able to enhance the antioxidant capacity of wucai, maintain normal leaf color and shape during storage, and delay the decline of nutritional properties; therefore, EBR pretreatment has potential commercial value for prolonging the market life of wucai.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA