Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155147

RESUMO

Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.


Assuntos
Antraquinonas/farmacologia , Efeito Espectador/efeitos dos fármacos , Imunoconjugados/farmacologia , Animais , Antraquinonas/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Camundongos Endogâmicos NOD , Camundongos SCID , Carga Tumoral/efeitos dos fármacos
2.
Cancer Cell Int ; 20: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002015

RESUMO

BACKGROUND: Therapeutic approaches for cancer rely on careful consideration of finding the optimal way of delivering the pro-drug for cellular-based cancer treatment. Cell lines and cell cultures have been used in these studies to compare the in vitro and in vivo efficacy of autologous vs. allogeneic tumour cellular gene therapy. Here we have investigated and are reporting for the first time the effect of prodrug ganciclovir (GCV)-preloading (pre-treatment) in suicide gene therapy of cancer. METHODS: This study examines the effect of GCV-preloading (pre-treatment) on a range of tumour cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumour cell lines. RESULTS: Following co-culture of herpes simplex virus thymidine kinase (HSV-TK) modified tumour cells and unmodified tumour cells both in vitro and in vivo, GCV-preloading (pre-treatment) of TK-modified human and mouse mesothelioma cells and ovarian tumour cells allowed them to mediate efficiently bystander killing of neighbouring unmodified tumour cells in vitro. In contrast, GCV-preloading of TK-modified human and mouse mesothelioma cells and ovarian tumour cells abolished their in vivo ability to induce bystander killing of unmodified tumour cells, although there was some tumour regression compared to control groups but this was not statistically significant. These results suggest that preloading TK modified tumour cells with GCV needs further study to define the most effective strategy for an in vivo application to retain their bystander killing potential after exposure to lethal doses of GCV in vitro. CONCLUSIONS: This study highlights the promising possibility of improving the efficacy of pro-drug system to prevent any damage to the immune system and enhancing this type of suicide gene therapy of cancer, as well as the need for further studies to explore the discrepancies between in vitro and in vivo results.

3.
Proc Natl Acad Sci U S A ; 114(26): 6812-6817, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607091

RESUMO

Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.


Assuntos
Apoptose/efeitos dos fármacos , Efeito Espectador/efeitos dos fármacos , Neoplasias Experimentais/terapia , Oligopeptídeos/farmacologia , Vírus Oncolíticos/fisiologia , Peptidomiméticos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Apoptose/imunologia , Efeito Espectador/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
4.
BMC Cancer ; 19(1): 194, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832603

RESUMO

BACKGROUND: Antibody-drug conjugates (ADCs) are intended to bind to specific positive target antigens and eradicate only tumor cells from an intracellular released payload through the lysosomal protease. Payloads, such as MMAE, have the capacity to kill adjacent antigen-negative (Ag-) tumor cells, which is called the bystander-killing effect, as well as directly kill antigen-positive (Ag+) tumor cells. We propose that a dose-response curve should be independently considered to account for target antigen-positive/negative tumor cells. METHODS: A model was developed to account for the payload in Ag+/Ag- cells and the associated parameters were applied. A tumor growth inhibition (TGI) effect was explored based on an ordinary differential equation (ODE) after substituting the payload concentration in Ag+/Ag- cells into an Emax model, which accounts for the dose-response curve. To observe the bystander-killing effects based on the amount of Ag+/Ag- cells, the Emax model is used independently. TGI models based on ODE are unsuitable for describing the initial delay through a tumor-drug interaction. This was solved using an age-structured model based on the stochastic process. RESULTS: ß∈(0,1] is a fraction parameter that determines the proportion of cells that consist of Ag+/Ag- cells. The payload concentration decreases when the ratio of efflux to influx increases. The bystander-killing effect differs with varying amounts of Ag+ cells. The larger ß is, the less bystander-killing effect. The decrease of the bystander-killing effect becomes stronger as Ag+ cells become larger than the Ag- cells. Overall, the ratio of efflux to influx, the amount of released payload, and the proportion of Ag+ cells determine the efficacy of the ADC. The tumor inhibition delay through a payload-tumor interaction, which goes through several stages, may be solved using an age-structured model. CONCLUSIONS: The bystander-killing effect, one of the most important topics of ADCs, has been explored in several studies without the use of modeling. We propose that the bystander-killing effect can be captured through a mathematical model when considering the Ag+ and Ag- cells. In addition, the TGI model based on the age-structure can capture the initial delay through a drug interaction as well as the bystander-killing effect.


Assuntos
Antineoplásicos/administração & dosagem , Imunoconjugados/uso terapêutico , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Dose-Resposta a Droga , Humanos , Modelos Biológicos
5.
Cancer Cell Int ; 17: 96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089859

RESUMO

BACKGROUND: Cellular based therapeutic approaches for cancer rely on careful consideration of finding the optimal cell to execute the cellular goal of cancer treatment. Cell lines and primary cell cultures have been used in some studies to compare the in vitro and in vivo efficacy of autologous vs allogeneic tumour cell vaccines. METHODS: This study examines the effect of γ-irradiation on a range of tumor cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumor cell lines. RESULTS: Following co-culture of HSV-TK modified tumor cells and unmodified tumor cells both in vitro and in vivo we observed that the PA-STK ovarian tumor cells were sensitive to γ-irradiation, completely abolishing their ability to induce bystander killing of unmodified tumor cells. In contrast, TK-modified human and mouse mesothelioma cells were found to retain their in vitro and in vivo bystander killing effect after γ-irradiation. Morphological evidence was consistent with the death of PA-STK cells being by pyknosis after γ-irradiation. These results suggest that PA-STK cells are not suitable for clinical application of suicide gene therapy of cancer, as lethal γ-irradiation (100 Gy) interferes with their bystander killing activity. However, the human mesothelioma cell line CRL-5830-TK retained its bystander killing potential after exposure to similarly lethal γ-irradiation (100 Gy). CRL-5830 may therefore be a suitable vehicle for HSV-TK suicide gene therapy. CONCLUSIONS: This study highlights the diversity among tumor cell lines and the careful considerations needed to find the optimal tumor cell line for this type of suicide gene therapy of cancer.

6.
Eur J Med Chem ; 276: 116701, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39067438

RESUMO

Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Peptídeos , Piranos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Piranos/farmacologia , Piranos/química , Piranos/síntese química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Efeito Espectador/efeitos dos fármacos , Estrutura Molecular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Policetídeos de Poliéter
7.
Adv Sci (Weinh) ; 11(13): e2306309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269648

RESUMO

Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.


Assuntos
Imunoconjugados , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
8.
J Control Release ; 372: 176-193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880331

RESUMO

KRAS-mutant cancers, due to their protein targeting complexity, present significant therapeutic hurdles. The identification of the macropinocytic phenotype in these cancers has emerged as a promising alternative therapeutic target. Our study introduces MPD1, an macropinocytosis-targeting peptide-drug conjugates (PDC), which is developed to treat KRAS mutant cancers. This PDC is specifically designed to trigger a positive feedback loop through its caspase-3 cleavable characteristic. However, we observe that this loop is hindered by DNA-PK mediated DNA damage repair processes in cancer cells. To counter this impediment, we employ AZD7648, a DNA-PK inhibitor. Interestingly, the combined treatment of MPD1 and AZD7648 resulted in a 100% complete response rate in KRAS-mutant xenograft model. We focus on the synergic mechanism of it. We discover that AZD7648 specifically enhances macropinocytosis in KRAS-mutant cancer cells. Further analysis uncovers a significant correlation between the increase in macropinocytosis and PI3K signaling, driven by AMPK pathways. Also, AZD7648 reinforces the positive feedback loop, leading to escalated apoptosis and enhanced payload accumulation within tumors. AZD7648 possesses broad applications in augmenting nano-sized drug delivery and preventing DNA repair resistance. The promising efficacy and evident synergy underscore the potential of combining MPD1 with AZD7648 as a strategy for treating KRAS-mutant cancers.


Assuntos
Peptídeos , Pinocitose , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras) , Pinocitose/efeitos dos fármacos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Peptídeos/farmacologia , Peptídeos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Feminino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Control Release ; 344: 26-38, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202743

RESUMO

Despite recent breakthroughs in the development of direct KRAS inhibitors and modulators, no drugs targeting pan-KRAS mutant cancers are clinically available. Here, we report a novel strategy to treat pan-KRAS cancers using a caspase-3 cleavable peptide-drug conjugate that exploits enhanced albumin metabolism in KRAS altered cancers to deliver a cytotoxic agent that can induce a widespread bystander killing effect in tumor cells. Increased albumin metabolism in KRAS mutant cancer cells induced apoptosis via the intracellular uptake of albumin-bound MPD1. This allowed caspase-3 upregulation activated MPD1 to release the payload and exert the non-selective killing of neighboring cancer cells. MPD1 exhibited potent and durable antitumor efficacy in mouse xenograft models with different KRAS genotypes. An augmentation of anti-cancer efficacy was achieved by the bystander killing effect derived from the caspase-3 mediated activation of MPD1. In summary, albumin metabolism-induced apoptosis, together with the bystander killing effect of MPD1 boosted by caspase-3 mediated activation, intensified the efficacy of MPD1 in KRAS mutant cancers. These findings suggest that this novel peptide-drug conjugate could be a promising breakthrough for the treatment in the targeting of pan-KRAS mutant cancers.


Assuntos
Antineoplásicos , Neoplasias , Albuminas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Peptídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA