Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 433: 8-20, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28826971

RESUMO

We examine the localization patterns of ParA, ParB, PopZ, and MipZ, which are key division proteins in C. crescentus bacteria. While Par and PopZ proteins have been implicated in the physical segregation of the replicated chromosome, MipZ dimers control the placement of the cell division plane by preventing FtsZ proteins from assembling into a Z-ring. MipZ proteins generate bipolar gradients that are sensitive to Par protein localization, however, it is not understood how the MipZ gradient is shaped so as to allow for the correct Z-ring placement during asymmetric cell division in C. crescentus. In this paper, we develop and analyze a mathematical model that incorporates the known interactions between Par, PopZ, and MipZ proteins and use it to test mechanisms for MipZ gradient formation. Using our model, we show that gradient-dependent ParB advection velocities in conjunction with a ParA polar recycling mechanism are sufficient to maintain a robust new pole-directed ParA dimer gradient during segregation. A "saturation of binding site" hypothesis limiting access of ParA and MipZ to the ParB complex is then necessary and sufficient to generate time-averaged bipolar MipZ protein gradients with minima that are skewed toward ParA gradient peaks at the new pole, in agreement with data. By analyzing reduced versions of the model, we show the existence of oscillatory ParA localization regimes provided that cytoplasmic PopZ oligomers interact with ParA and ParA is over-expressed. We use our model to study mechanisms by which these protein patterns may simultaneously direct proper chromosome segregation and division site placement in C. crescentus.


Assuntos
Divisão Celular Assimétrica/fisiologia , Caulobacter crescentus/química , Modelos Teóricos , Análise Espaço-Temporal , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos , Proteínas do Citoesqueleto/metabolismo
2.
Elife ; 3: e04601, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25490152

RESUMO

Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding.


Assuntos
Proteínas de Bactérias/química , Caulobacter crescentus/ultraestrutura , Divisão Celular , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/química , Proteínas de Escherichia coli/química , Escherichia coli/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Lipossomos/química , Lipossomos/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA