Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0209623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289137

RESUMO

Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Salicilatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
2.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600509

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Assuntos
COVID-19 , Coinfecção , Infecções por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacologia , Levofloxacino/farmacologia , Meropeném/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Imipenem/farmacologia , Porinas/genética , Porinas/farmacologia , Testes de Sensibilidade Microbiana
3.
Biofouling ; : 1-13, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077794

RESUMO

Efflux pump inhibitors are a potential therapeutic strategy for managing antimicrobial resistance and biofilm formation. This article evaluated the effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on the biofilm growth dynamics and the production of virulence factors by Burkholderia pseudomallei. The effects of CCCP on planktonic, growing, and mature biofilm, interaction with antibacterial drugs, and protease and siderophore production were assessed. CCCP MICs ranged between 128 and 256 µM. The CCCP (128 µM) had a synergic effect with all the antibiotics tested against biofilms. Additionally, CCCP reduced (p < .05) the biomass of biofilm growth and mature biofilms at 128 and 512 µM, respectively. CCCP also decreased (p < .05) protease production by growing (128 µM) and induced (p < .05) siderophore release by planktonic cells (128 µM) growing biofilms (12.8 and 128 µM) and mature biofilms (512 µM). CCCP demonstrates potential as a therapeutic adjuvant for disassembling B. pseudomallei biofilms and enhancing drug penetration.

4.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203751

RESUMO

Presenilin 1 (PS1) is a transmembrane proteolytic subunit of γ-secretase that cleaves amyloid precursor proteins. Mutations in PS1 (mPS1) are associated with early-onset familial Alzheimer's disease (AD). The link between mutated PS1, mitochondrial calcium regulation, and AD has been studied extensively in different test systems. Despite the wide-ranging role of mPS1 in AD, there is a paucity of information on the link between PS1 and neuronal cell death, a hallmark of AD. In the present study, we employed the selective mitochondrial uncoupler carbonyl cyanide chlorophenylhydrazone (CCCP) and compared the reactivity of mPS1-transfected cultured rat hippocampal neurons with PS1 and control neurons in a situation of impaired mitochondrial functions. CCCP causes a slow rise in cytosolic and mitochondrial calcium in all three groups of neurons, with the mPS1 neurons demonstrating a faster rise. Consequently, mPS1 neurons were depolarized by CCCP and measured with TMRM, a mitochondrial voltage indicator, more than the other two groups. Morphologically, CCCP produced more filopodia in mPS1 neurons than in the other two groups, which were similarly affected by the drug. Finally, mPS1 transfected neurons tended to die from prolonged exposure to CCCP sooner than the other groups, indicating an increase in vulnerability associated with a lower ability to regulate excess cytosolic calcium.


Assuntos
Doença de Alzheimer , Cálcio , Nitrilas , Animais , Ratos , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Neurônios , Cálcio da Dieta , Hipocampo
5.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37580156

RESUMO

The purpose of this study was to evaluate the antimicrobial activity of indole-3-carbinol (I3C) with membrane-active agents, namely carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and ethylenediaminetetraacetic acid (EDTA) against multidrug-resistant (MDR) Gram-negative bacteria and bacterial persisters. The determination of minimal inhibitory concentration (MIC) showed that I3C was effective against Acinetobacter baumannii (3.13‒6.25 × 10-3 mol l-1), Klebsiella pneumoniae (8 × 10-3 mol l-1), Pseudomonas aeruginosa (6.25‒12.5 × 10-3 mol l-1), and Escherichia coli (6.25‒12.5 × 10-3 mol l-1). Our study demonstrated that EDTA synergistically enhanced the bactericidal activity of I3C against most MDR Gram-negative bacteria isolates and contributed to an 8- to 64-fold MIC reduction compared with that of I3C alone, yet CCCP only displayed synergy with I3C against P. aeruginosa and A. baumannii. The EDTA-I3C combination also significantly reduced the viable number of testing bacteria (P = 7.2E-05), effectively reduced bacterial persisters, and repressed bacterial growth compared with that the use of I3C alone. Our data demonstrate that use of EDTA as adjuvant molecules can effectively improve the antibacterial activity of I3C and may help to reduce the development of antimicrobial resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Ácido Edético/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Bactérias , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629119

RESUMO

A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.


Assuntos
Mitocôndrias , Neurônios , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Cálcio da Dieta , Hipocampo
7.
Exp Eye Res ; 215: 108903, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951999

RESUMO

Hyperglycemia increases the risk of corneal endothelial dysfunction, resulting in damage to corneal endothelial structure and function. However, the effect and mechanism of hyperglycemia-induced corneal endothelial damage remain elusive. In this study, we demonstrated that hyperglycemia reduced the expression of pump-related protein Na+/K+ ATPase and barrier-related protein ZO-1. Moreover, we found hyperglycemia caused abnormal changes of morphological mitochondria and dynamics in vitro. In addition, the decreased levels of mitophagy were further confirmed Western blotting and LC3B-Mitotracker Immunofluorescence. Exogenous application of mitophagy agonist carbonyl cyanide m-chlorophenyl hydrazine (CCCP) increases the expression of Na+/K+ ATPase and ZO-1 in corneal endothelial cells through up-regulated mitophagy in vitro. In addition, CCCP effectively reverses the phenomenon of corneal opacity and increased corneal thickness in diabetic mice. Therefore, our demonstrated the novel function of mitophagy in the pathogenesis of diabetic cornea endothelial dysfunction, and provide potential approach for treating diabetic corneal endothelial dysfunction.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Hiperglicemia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Córnea/patologia , Lesões da Córnea/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Hiperglicemia/metabolismo , Camundongos , Mitofagia
8.
Pharmacol Res ; 176: 106063, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999225

RESUMO

The proteases of the mitochondrial inner membrane are challenging yet highly desirable drug targets for complex, multifactorial diseases prevalent mainly in the elderly. Among them, OMA1 with its substrates OPA1 and DELE1 safeguards mitochondrial homeostasis at the intersection of energy metabolism and apoptosis, which may have relevance for neurodegeneration, malignancy and heart failure, among other diseases. Little is known about OMA1. Its structure has not been solved and we are just beginning to understand the enzyme's context-dependent regulation. OMA1 appears dormant under physiological conditions as judged by OPA1's processing pattern. The protease is rapidly activated, however, when cells experience stress or undergo apoptosis. Intriguingly, genetic OMA1 ablation can delay or even prevent apoptosis in animal models for diseases that can be broadly categorized as ischemia-reperfusion related disorders. Three groups have reported their efforts implementing OMA1 drug screens. This article reviews some of the technical challenges encountered in these assays and highlights what can be learned for future screening campaigns, and about the OMA1 protease more broadly. OMA1 does not exists in a vacuum and potent OMA1 inhibitors are needed to tease apart OMA1's intricate interactions with the other mitochondrial proteases and enzymes. Furthermore, OMA1 inhibitors hold the promise of becoming a new class of cytoprotective medicines for disorders influenced by dysfunctional mitochondria, such as heart failure or Alzheimer's Disease.


Assuntos
Metaloendopeptidases/antagonistas & inibidores , Animais , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Metaloendopeptidases/metabolismo
9.
Mar Drugs ; 20(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200630

RESUMO

Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.


Assuntos
COVID-19 , Leucócitos Mononucleares/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos/farmacologia , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Phaeophyceae/química , Polissacarídeos/química , Adulto Jovem
10.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293178

RESUMO

While neuronal mitochondria have been studied extensively in their role in health and disease, the rules that govern calcium regulation in mitochondria remain somewhat vague. In the present study using cultured rat hippocampal neurons transfected with the mtRCaMP mitochondrial calcium sensor, we investigated the effects of cytosolic calcium surges on the dynamics of mitochondrial calcium ([Ca2+]m). Cytosolic calcium ([Ca2+]c) was measured using the high affinity sensor Fluo-2. We recorded two types of calcium events: local and global ones. Local events were limited to a small, 2-5 µm section of the dendrite, presumably caused by local synaptic activity, while global events were associated with network bursts and extended throughout the imaged dendrite. In both cases, cytosolic surges were followed by a delayed rise in [Ca2+]m. In global events, the rise lasted longer and was observed in all mitochondrial clusters. At the end of the descending part of the global event, [Ca2+]m was still high. Global events were accompanied by short and rather high [Ca2+]m surges which we called spikelets, and were present until the complete decay of the cytosolic event. In the case of local events, selective short-term responses were limited to the part of the mitochondrial cluster that was located directly in the center of [Ca2+]c activity, and faded quickly, while responses in the neighboring regions were rarely observed. Caffeine (which recruits ryanodine receptors to supply calcium to the mitochondria), and carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a mitochondrial uncoupler) could affect [Ca2+]m in both global and local events. We constructed a computational model to simulate the fundamental role of mitochondria in restricting calcium signals within a narrow range under synapses, preventing diffusion into adjacent regions of the dendrite. Our results indicate that local cytoplasmic and mitochondrial calcium concentrations are highly correlated. This reflects a key role of signaling pathways that connect the postsynaptic membrane to local mitochondrial clusters.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cafeína/farmacologia , Mitocôndrias/metabolismo , Sinalização do Cálcio , Hipocampo/metabolismo , Neurônios/metabolismo
11.
J Cell Sci ; 132(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31413070

RESUMO

Recent studies show that mitochondria and actin filaments work together in two contexts: (1) increased cytoplasmic calcium induces cytoplasmic actin polymerization that stimulates mitochondrial fission and (2) mitochondrial depolarization causes actin assembly around mitochondria, with roles in mitophagy. It is unclear whether these two processes utilize similar actin assembly mechanisms. Here, we show that these are distinct actin assembly mechanisms in the acute phase after treatment (<10 min). Calcium-induced actin assembly is INF2 dependent and Arp2/3 complex independent, whereas depolarization-induced actin assembly is Arp2/3 complex dependent and INF2 independent. The two types of actin polymerization are morphologically distinct, with calcium-induced filaments throughout the cytosol and depolarization-induced filaments as 'clouds' around depolarized mitochondria. We have previously shown that calcium-induced actin stimulates increases in both mitochondrial calcium and recruitment of the dynamin GTPase Drp1 (also known as DNM1L). In contrast, depolarization-induced actin is temporally associated with extensive mitochondrial dynamics that do not result in mitochondrial fission, but in circularization of the inner mitochondrial membrane (IMM). These dynamics are dependent on the protease OMA1 and independent of Drp1. Actin cloud inhibition causes increased IMM circularization, suggesting that actin clouds limit these dynamics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Citoplasma/metabolismo , Imunofluorescência , Humanos , Ionomicina/farmacologia , Microscopia Confocal , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Multimerização Proteica/efeitos dos fármacos
12.
Pharmacol Res ; 163: 105248, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065283

RESUMO

The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.


Assuntos
Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Peptídeos/metabolismo
13.
Int J Cancer ; 147(12): 3500-3510, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559816

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of KS, an aggressive neoplasm that mainly occurs in immune-compromised patients. Spindle cells represent the main feature of this aggressive malignancy and arise from KSHV-infected endothelial cells undergoing endothelial to mesenchymal transition (EndMT), which changes their cytoskeletal composition and organization. As in epithelial to mesenchymal transition (EMT), EndMT is driven by transcription factors such as SNAI1 and ZEB1 and implies a cellular reprogramming mechanism regulated by several molecular pathways, particularly PI3K/AKT/MTOR. Here we found that KSHV activated MTOR and its targets 4EBP1 and ULK1 and reduced bulk macroautophagy and mitophagy to promote EndMT, activate ER stress/unfolded protein response (UPR), and increase the release of the pro-angiogenic and pro-inflammatory chemokine CCL2 by HUVEC cells. Our study suggests that the manipulation of macroautophagy, mitophagy and UPR and the interplay between the three could be a promising strategy to counteract EndMT, angiogenesis and inflammation, the key events of KSHV-driven sarcomagenesis.


Assuntos
Quimiocina CCL2/metabolismo , Células Endoteliais/citologia , Herpesvirus Humano 8/patogenicidade , Mitocôndrias/metabolismo , Sarcoma de Kaposi/virologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Transição Epitelial-Mesenquimal , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macroautofagia , Mitofagia , Modelos Biológicos , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Sarcoma de Kaposi/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas
14.
Artigo em Inglês | MEDLINE | ID: mdl-32631824

RESUMO

Bacterial membrane potential is difficult to measure using classical electrophysiology techniques due to the small cell size and the presence of the peptidoglycan cell wall. Instead, chemical probes are often used to study membrane potential changes under conditions of interest. Many of these probes are fluorescent molecules that accumulate in a charge-dependent manner, and the resulting fluorescence change can be analyzed via flow cytometry or using a fluorescence microplate reader. Although this technique works well in many Gram-positive bacteria, it generates fairly low signal-to-noise ratios in Gram-negative bacteria due to dye exclusion by the outer membrane. We detail an optimized workflow that uses the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], to measure Escherichia coli membrane potential changes in high throughput and describe the assay conditions that generate significant signal-to-noise ratios to detect membrane potential changes using a fluorescence microplate reader. A valinomycin calibration curve demonstrates this approach can robustly report membrane potentials over at least an ∼144-mV range with an accuracy of ∼12 mV. As a proof of concept, we used this approach to characterize the effects of some commercially available small molecules known to elicit membrane potential changes in other systems, increasing the repertoire of compounds known to perturb E. coli membrane energetics. One compound, the eukaryotic Ca2+ channel blocker amlodipine, was found to alter E. coli membrane potential and decrease the MIC of kanamycin, further supporting the value of this screening approach. This detailed methodology permits studying E. coli membrane potential changes quickly and reliably at the population level.


Assuntos
Bioensaio , Escherichia coli , Potenciais da Membrana , Bactérias Gram-Negativas , Valinomicina
15.
Microb Pathog ; 147: 104244, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32437832

RESUMO

This study aimed to identify the role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniae. Sixty-one K. pneumoniae clinical isolates were collected between January and June of 2017 from the affiliated hospital of southwest medical university in Luzhou, China. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) were determined using broth microdilution method. Crystal violet (CV) staining and confocal laser scanning microscope (CLSM) were used to monitor biofilm formation. Efflux pump expression was investigated qualitatively and quantitatively by polymerase chain reaction (PCR) and reverse transcriptase quantitative PCR (RT-qPCR). Crystal violet staining was performed to evaluate the effect of efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazine (CCCP) on K. pneumoniae biofilms. Our results showed that crystal violet staining and CLSM had good consistency in biofilm detection. Biofilm formation was an independent biological behavior of the strain and measured at 24 h was reasonable. Biofilms up-regulated antimicrobial resistance and expression of efflux pump gene acrA, emrB, oqxA, and qacEΔ1 in K. pneumoniae. CCCP inhibited biofilms but dose-dependent effect was obvious. Altogether, our data demonstrates that biofilm formation, as well as its interaction with efflux pump, promotes antimicrobial resistance in K. pneumoniae.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Biofilmes , China , Humanos , Testes de Sensibilidade Microbiana
16.
Pharmacol Res ; 161: 105161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32846213

RESUMO

Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.


Assuntos
Comunicação Celular , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/genética , Regulação da Expressão Gênica , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Transdução de Sinais
17.
Mol Biol (Mosk) ; 54(2): 300-307, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32392200

RESUMO

The thermal stability of protein enzymes is determined in vitro by measuring the enzymatic activity during incubation at constant temperature. Refolding of thermal inactivated enzymes is carried out both in vitro and in vivo, in the presence of chaperones, usually at temperature optimal for the particular enzyme for the manifestation of enzymatic activity. In the present work thermal stability of enzymes in vitro (using purified preparations) and in vivo (directly in the bacterial cell) has been determined. Bacterial luciferases of Aliivibrio fischeri, Photobacterium leiognathi and Photorhabdus luminescens as protein substrates have been used. It is shown that the thermal stability of the P. luminescens and P. leiognathi luciferases in vivo in the Escherichia coli MG1655 dnaK^(+) and PK202 ΔdnaKJ14 strains is considerable higher than the thermal stability of "cell-free extract" luciferases. When an uncoupler of oxidative phosphorylation the carbonyl-cyanide-3-chlorophenylhydrazone (CCCP) that reduce the intracellular concentration of ATP to a minimum level, and the volatile hydrophobic substance (-)-Limonene (C10H16) as an inhibitor of chaperone-dependent refolding are added to the medium, the thermal stability of luciferases reduces almost to the level which is characteristic for the purified protein preparation. It is shown that the ATP-dependent chaperones ClpA and ClpB are essential for the increase of thermostability of luciferases in bacterial cells. Also, it is shown that the DnaKJE-dependent refolding of thermoinactivated luciferases is practically absent if the protonophore СССР or the hydrophobic substance (-)-Limonene was added to the bacterial suspension. Taking the data presented in this paper into account, it is necessary to consider the presence in bacterial cells of two different groups of ATP-dependent chaperones: 1st group (DnaKJE, GroEL/ES) is able to conduct the refolding both at low temperature after protein thermal inactivation and at high temperature at which protein thermal inactivation occurs; 2nd group (ClpA,ClpB, and possibly still unknown chaperones) is unable to conduct the standard refolding (i.e. at low temperature), but capable due to the hydrolysis energy of ATP of maintaining nonequilibrium stabilization of protein native forms at high temperature.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Chaperonas Moleculares/química , Dobramento de Proteína , Endopeptidase Clp , Estabilidade Proteica , Temperatura
18.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578262

RESUMO

Experimental evolution of Escherichia coli K-12 with benzoate, a partial uncoupler of the proton motive force (PMF), selects for mutations that decrease antibiotic resistance. We conducted experimental evolution in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a strong uncoupler. Cultures were serially diluted daily 1:100 in LBK medium containing 20 to 150 µM CCCP buffered at pH 6.5 or at pH 8.0. After 1,000 generations, the populations tolerated up to 150 µM CCCP. Sequenced isolates had mutations in mprA (emrR), which downregulates the EmrAB-TolC pump that exports CCCP. A mprA::kanR deletion conferred growth at 60 µM CCCP, though not at the higher levels resisted by evolved strains (150 µM). Some mprA mutant strains also had point mutations affecting emrA, but deletion of emrA abolished the CCCP resistance. Thus, CCCP-evolved isolates contained additional adaptations. One isolate lacked emrA or mprA mutations but had mutations in cecR (ybiH), whose product upregulates drug pumps YbhG and YbhFSR, and in gadE, which upregulates the multidrug pump MdtEF. A cecR::kanR deletion conferred partial resistance to CCCP. Other multidrug efflux genes that had mutations included ybhR and acrAB The acrB isolate was sensitive to the AcrAB substrates chloramphenicol and tetracycline. Other mutant genes in CCCP-evolved strains include rng (RNase G) and cyaA (adenylate cyclase). Overall, experimental evolution revealed a CCCP-dependent fitness advantage for mutations increasing CCCP efflux via EmrA and for mutations that may deactivate proton-driven pumps for drugs not present (cecR, gadE, acrAB, and ybhR). These results are consistent with our previous report of drug sensitivity associated with evolved benzoate tolerance.IMPORTANCE The genetic responses of bacteria to depletion of proton motive force (PMF), and their effects on drug resistance, are poorly understood. PMF drives export of many antibiotics, but the energy cost may decrease fitness when antibiotics are absent. Our evolution experiment reveals genetic mechanisms of adaptation to the PMF uncoupler CCCP, including selection for increased CCCP efflux but also against the expression of PMF-driven pumps for drugs not present. The results have implications for our understanding of the gut microbiome, which experiences high levels of organic acids that decrease PMF.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Escherichia coli K12/efeitos dos fármacos , Genes Bacterianos/genética , Mutação , Força Próton-Motriz , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Repressoras/genética , Fatores de Transcrição
19.
BMC Microbiol ; 19(1): 210, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488061

RESUMO

BACKGROUND: Efflux pump mediated antibiotic resistance is an unnoticed and undetected mechanism in clinical microbiology laboratory. RND efflux systems are known for aminoglycoside and tetracycline resistance whereas their role in carbapenem non-susceptibility is not established. The study was undertaken to investigate the role of efflux pump in providing resistance against carbapenems and their response against concentration gradient carbapenem stress on the transcriptional level of the AcrAB gene in the clinical isolates of Escherichia coli from a tertiary referral hospital of Northeast India. RESULTS: Out of 298 non-susceptible Escherichia coli isolates 98 isolates were found to have efflux pump mediated carbapenem non-susceptibility. Among them thirty-five were non carbapenemase producers and their expressional levels were verified using qRT-PCR under concentration gradient carbapenem stress. In this study, a strong correlation between ertapenem resistance and AcrA overexpression was observed which has not been reported previously. Further, it was observed that imipenem stress increased AcrB expression in Escherichia coli which holds the novelty of this study. Additionally, the transcription of AcrR was insistently increased which is much higher than the transcriptional level of AcrA under concentration gradient carbapenem stress condition. CONCLUSION: The study established that AcrAB pump is a relevant antibiotic resistance determinant in bacterial pathogen, has an important role in developing resistance against carbapenem group of antibiotics.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Proteínas de Transporte/genética , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Índia , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Transcrição Gênica/efeitos dos fármacos , beta-Lactamases/metabolismo
20.
Acta Microbiol Immunol Hung ; 66(1): 57-68, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246548

RESUMO

Enterococcus faecalis is one of the most significant pathogen in both nosocomial and community-acquired infections. Reduced susceptibility to antibiotics is in part due to efflux pumps. This study was conducted on 80 isolates of E. faecalis isolated from outpatients with urinary tract infection during a period of 1 year from April 2014 to April 2015. The antibiotic susceptibility patterns of isolates were determined by the disk diffusion method and presence of efrA and efrB genes was detected by PCR and sequencing. Minimum inhibitory concentrations (MICs) to ciprofloxacin (CIP) were measured with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) by broth microdilution. The highest resistance rate was observed to erythromycin (83.3%) and the prevalence of efrA and efrB genes in all E. faecalis isolates was 100%. This study showed that 9 out of 13 (69.2%) ciprofloxacin-resistant isolates became less resistant at least fourfolds to CIP in the presence of efflux pump inhibitor. Our result showed that CCCP as an efflux inhibitor can increase effect of CIP as an efficient antibiotic and it is suggested that efrAB efflux pumps are involved in resistance to fluoroquinolone.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções Urinárias/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Enterococcus faecalis/isolamento & purificação , Feminino , Humanos , Irã (Geográfico) , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA