Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39321804

RESUMO

The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.

2.
Mol Cell ; 84(14): 2648-2664.e10, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38955181

RESUMO

The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.


Assuntos
Microscopia Crioeletrônica , Quinase 8 Dependente de Ciclina , Complexo Mediador , Ligação Proteica , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Complexo Mediador/química , Humanos , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , Animais , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Sítios de Ligação , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Células HEK293 , Domínios e Motivos de Interação entre Proteínas
3.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34910943

RESUMO

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/enzimologia , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Complexo Mediador/antagonistas & inibidores , Complexo Mediador/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228917

RESUMO

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ativação Transcricional , Nucleotidiltransferases/metabolismo , Complexo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
5.
Mol Cell ; 76(3): 485-499.e8, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495563

RESUMO

Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fibroblastos/efeitos dos fármacos , Interferon gama/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , RNA Polimerase II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Vesiculovirus/patogenicidade
6.
EMBO Rep ; 24(2): e54261, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36545778

RESUMO

CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.


Assuntos
Quinases Ciclina-Dependentes , Regulador de Condutância Transmembrana em Fibrose Cística , Mucosa Intestinal , Transdução de Sinais , Animais , Camundongos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Intestinal/metabolismo , Fosforilação
7.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Antimicrob Agents Chemother ; 68(3): e0107223, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319085

RESUMO

Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.


Assuntos
HIV-1 , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Ciclinas/farmacologia
9.
J Virol ; 97(9): e0092323, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671866

RESUMO

Latent HIV-1 provirus represents the barrier toward a cure for infection and is dependent upon the host RNA Polymerase (Pol) II machinery for reemergence. Here, we find that inhibitors of the RNA Pol II mediator kinases CDK8/19, Senexin A and BRD6989, inhibit induction of HIV-1 expression in response to latency-reversing agents and T cell signaling agonists. These inhibitors were found to impair recruitment of RNA Pol II to the HIV-1 LTR. Furthermore, HIV-1 expression in response to several latency reversal agents was impaired upon disruption of CDK8 by shRNA or gene knockout. However, the effects of CDK8 depletion did not entirely mimic CDK8/19 kinase inhibition suggesting that the mediator kinases are not functionally redundant. Additionally, treatment of CD4+ peripheral blood mononuclear cells isolated from people living with HIV-1 and who are receiving antiretroviral therapy with Senexin A inhibited induction of viral replication in response to T cell stimulation by PMA and ionomycin. These observations indicate that the mediator kinases, CDK8 and CDK19, play a significant role for regulation of HIV-1 transcription and that small molecule inhibitors of these enzymes may contribute to therapies designed to promote deep latency involving the durable suppression of provirus expression. IMPORTANCE A cure for HIV-1 infection will require novel therapies that can force elimination of cells that contain copies of the virus genome inserted into the cell chromosome, but which is shut off, or silenced. These are known as latently-infected cells, which represent the main reason why current treatment for HIV/AIDS cannot cure the infection because the virus in these cells is unaffected by current drugs. Our results indicate that chemical inhibitors of Cdk8 also inhibit the expression of latent HIV provirus. Cdk8 is an important enzyme that regulates the expression of genes in response to signals to which cells need to respond and which is produced by a gene that is frequently mutated in cancers. Our observations indicate that Cdk8 inhibitors may be employed in novel therapies to prevent expression from latent provirus, which might eventually enable infected individuals to cease treatment with antiretroviral drugs.

10.
Am J Med Genet A ; 194(5): e63537, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193604

RESUMO

BACKGROUND: Cyclin-dependent kinase 8 (CDK8) is part of a regulatory kinase module that regulates the activity of the Mediator complex. The Mediator, a large conformationally flexible protein complex, goes on to regulate RNA polymerase II activity, consequently affecting transcriptional regulation. Thus, inactivating mutations of the genes within the kinase module cause aberrant transcriptional regulation and disease, namely, CDK8-related intellectual developmental disorder with hypotonia and behavioral abnormalities (IDDHBA). CASE PRESENTATION: We describe, for the first time, a likely pathogenic heterozygous CDK8 variant c.599G>A, p.(Arg200Gln) inherited from the biological mother. The clinical presentation of the child and mother is within the described clinical spectrum for IDDHBA; however, undocumented progressive contractures of the hips and knees as well as scoliosis were also observed in the child. This phenotype was not found in the mother, highlighting a heterogenous presentation for the same variant within the same family. Furthermore, the described clinical presentation may further support the notion of a module- or Mediator-related syndrome with varying clinical presentation. CONCLUSION: This case report documents the first inherited case of IDDHBA and expands the phenotypic spectrum for CDK8-related disease to include undocumented progressive contractures of the hips and knees as well as scoliosis, which may support the notion of a module- or Mediator-related syndrome with varying clinical presentation.


Assuntos
Contratura , Escoliose , Criança , Humanos , Quinase 8 Dependente de Ciclina/genética , Complexo Mediador/genética , Mutação , Contratura/diagnóstico , Contratura/genética
11.
Biol Pharm Bull ; 47(3): 669-679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508765

RESUMO

Osteoporosis is caused by imbalance between osteogenesis and bone resorption, thus, osteogenic drugs and resorption inhibitors are used for treatment of osteoporosis. The present study examined the effects of (R)-4-(1-hydroxyethyl)-3-{4-[2-(tetrahydropyran-4-yloxy)ethoxy]phenoxy}benzamide (KY-273), a diphenyl ether derivative, on CDK8/19 activity, osteoblast differentiation and femoral bone using micro-computed tomography in female rats. KY-273 potently inhibited CDK8/19 activity, promoted osteoblast differentiation with an increase in alkaline phosphatase (ALP) activity, and gene expression of type I collagen, ALP and BMP-4 in mesenchymal stem cells (ST2 cells). In female rat femur, ovariectomy decreased metaphyseal trabecular bone volume (Tb.BV), mineral content (Tb.BMC), yet had no effect on metaphyseal and diaphyseal cortical bone volume (Ct.BV), mineral content (Ct.BMC) and strength parameters (BSPs). In ovaries-intact and ovariectomized rats, oral administration of KY-273 (10 mg/kg/d) for 6 weeks increased metaphyseal and diaphyseal Ct.BV, Ct.BMC, and BSPs without affecting medullary volume (Med.V), but did not affect Tb.BV and Tb.BMC. In ovariectomized rats, alendronate (3 mg/kg/d) caused marked restoration of Tb.BV, Tb.BMC and structural parameters after ovariectomy, and increased metaphyseal but not diaphyseal Ct.BV, Ct.BMC, and BSPs. In ovaries-intact and ovariectomized rats, by the last week, KY-273 increased bone formation rate/bone surface at the periosteal but not the endocortical side. These findings indicate that KY-273 causes osteogenesis in cortical bone at the periosteal side without reducing Med.V. In conclusion, KY-273 has cortical-bone-selective osteogenic effects by osteoblastogenesis via CDK8/19 inhibition in ovaries-intact and ovariectomized rats, and is an orally active drug candidate for bone diseases such as osteoporosis in monotherapy and combination therapy.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Feminino , Animais , Osteogênese , Densidade Óssea , Ratos Sprague-Dawley , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Ovariectomia , Minerais/farmacologia , Quinase 8 Dependente de Ciclina
12.
Mol Cell ; 64(3): 455-466, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773677

RESUMO

Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.


Assuntos
Regulação Fúngica da Expressão Gênica , Complexo Mediador/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIB/genética , Sítios de Ligação , Complexo Mediador/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/metabolismo , Iniciação da Transcrição Genética , Ativação Transcricional
13.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460002

RESUMO

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Epiteliais Alveolares , Transição Epitelial-Mesenquimal/genética , Quinase 8 Dependente de Ciclina/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
J Enzyme Inhib Med Chem ; 39(1): 2305852, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38258519

RESUMO

It has been reported that CDK8 plays a key role in acute myeloid leukaemia. Here, a total of 40 compounds were rational designed and synthesised based on the previous SAR. Among them, compound 12 (3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide) showed the most potent inhibiting activity against CDK8 with an IC50 value of 39.2 ± 6.3 nM and anti AML cell proliferation activity (molm-13 GC50 = 0.02 ± 0.01 µM, MV4-11 GC50 = 0.03 ± 0.01 µM). Mechanistic studies revealed that this compound 12 could inhibit the phosphorylation of STAT-1 and STAT-5. Importantly, compound 12 showed relative good bioavailability (F = 38.80%) and low toxicity in vivo. This study has great significance for the discovery of more efficient CDK8 inhibitors and the development of drugs for treating AML in the future.


Assuntos
Leucemia Mieloide Aguda , Humanos , Disponibilidade Biológica , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Quinase 8 Dependente de Ciclina
15.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791449

RESUMO

Dysregulation of cyclin-dependent kinase 8 (CDK8) activity has been associated with many diseases, including colorectal and breast cancer. As usual in the CDK family, the activity of CDK8 is controlled by a regulatory protein called cyclin C (CycC). But, while human CDK family members are generally activated in two steps, that is, the binding of the cyclin to CDK and the phosphorylation of a residue in the CDK activation loop, CDK8 does not require the phosphorylation step to be active. Another peculiarity of CDK8 is its ability to be associated with CycC while adopting an inactive form. These specificities raise the question of the role of CycC in the complex CDK8-CycC, which appears to be more complex than the other members of the CDK family. Through molecular dynamics (MD) simulations and binding free energy calculations, we investigated the effect of CycC on the structure and dynamics of CDK8. In a second step, we particularly focused our investigation on the structural and molecular basis of the protein-protein interaction between the two partners by finely analyzing the energetic contribution of residues and simulating the transition between the active and the inactive form. We found that CycC has a stabilizing effect on CDK8, and we identified specific interaction hotspots within its interaction surface compared to other human CDK/Cyc pairs. Targeting these specific interaction hotspots could be a promising approach in terms of specificity to effectively disrupt the interaction between CDK8. The simulation of the conformational transition from the inactive to the active form of CDK8 suggests that the residue Glu99 of CycC is involved in the orientation of three conserved arginines of CDK8. Thus, this residue may assume the role of the missing phosphorylation step in the activation mechanism of CDK8. In a more general view, these results point to the importance of keeping the CycC in computational studies when studying the human CDK8 protein in both the active and the inactive form.


Assuntos
Ciclina C , Quinase 8 Dependente de Ciclina , Simulação de Dinâmica Molecular , Ligação Proteica , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/química , Ciclina C/metabolismo , Ciclina C/química , Humanos , Fosforilação , Termodinâmica , Sítios de Ligação
16.
Am J Hum Genet ; 106(5): 717-725, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330417

RESUMO

We identified three unrelated individuals with de novo missense variants in CDK19, encoding a cyclin-dependent kinase protein family member that predominantly regulates gene transcription. These individuals presented with hypotonia, global developmental delay, epileptic encephalopathy, and dysmorphic features. CDK19 is conserved between vertebrate and invertebrate model organisms, but currently abnormalities in CDK19 are not known to be associated with a human disorder. Loss of Cdk8, the fly homolog of CDK19, causes larval lethality, which is suppressed by expression of human CDK19 reference cDNA. In contrast, the CDK19 p.Tyr32His and p.Thr196Ala variants identified in the affected individuals fail to rescue the loss of Cdk8 and behave as null alleles. Additionally, neuronal RNAi-mediated knockdown of Cdk8 in flies results in semi-lethality. The few eclosing flies exhibit severe seizures and a reduced lifespan. Both phenotypes are fully suppressed by moderate expression of the CDK19 reference cDNA but not by expression of the two variants. Finally, loss of Cdk8 causes an obvious loss of boutons and synapses at larval neuromuscular junctions (NMJs). Together, our findings demonstrate that human CDK19 fully replaces the function of Cdk8 in the fly, the human disease-associated CDK19 variants behave as strong loss-of-function variants, and deleterious CDK19 variants underlie a syndromic neurodevelopmental disorder.


Assuntos
Encefalopatias/genética , Quinases Ciclina-Dependentes/genética , Epilepsia Generalizada/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Adulto , Sequência de Aminoácidos , Animais , Pré-Escolar , Quinase 8 Dependente de Ciclina/deficiência , Quinase 8 Dependente de Ciclina/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Junção Neuromuscular , Doenças Raras/genética , Convulsões/genética , Síndrome , Adulto Jovem
17.
Development ; 147(11)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32439758

RESUMO

We previously identified the cyclin dependent kinase Cdk8 as a putative silencing factor for Xist To investigate its role in X inactivation, we engineered a Cdk8 mutation in mouse embryonic stem cells (ESCs) carrying an inducible system for studying Xist function. We found that Xist repressed X-linked genes at half of the expression level in Cdk8 mutant cells, whereas they were almost completely silenced in the controls. Lack of Cdk8 impaired Ezh2 recruitment and the establishment of histone H3 lysine 27 tri-methylation but not PRC1 recruitment by Xist Transgenic expression of wild-type but not catalytically inactive Cdk8 restored efficient gene repression and PRC2 recruitment. Mutation of the paralogous kinase Cdk19 did not affect Xist function, and combined mutations of Cdk8 and Cdk19 resembled the Cdk8 mutation. In mice, a Cdk8 mutation caused post-implantation lethality. We observed that homozygous Cdk8 mutant female embryos showed a greater developmental delay than males on day 10.5. Together with the inefficient repression of X-linked genes in differentiating Cdk8 mutant female ESCs, these data show a requirement for Cdk8 in the initiation of X inactivation.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Histonas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Embrião de Mamíferos , Desenvolvimento Embrionário , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mutagênese , Complexo Repressor Polycomb 2/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética
18.
New Phytol ; 238(2): 724-736, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683527

RESUMO

CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lipídeos
19.
Bioorg Chem ; 133: 106402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791618

RESUMO

As an ideal anti-inflammatory target, cyclin-dependent kinase 8 (CDK8) has gradually attracted the attention of researchers. CDK8 inhibition up-regulates Interleukin-10 (IL-10) expression by enhancing the transcriptional activity of activator protein-1 (AP-1), and augmenting IL-10 abundance is a viable strategy for the treatment of inflammatory bowel disease (IBD). In this research, through structure-based drug design and dominant fragment hybridization, a series of poly-substituted pyridine derivatives were designed and synthesized as CDK8 inhibitors. Ultimately, compound CR16 was identified as the best one, which exhibited good inhibitory activity against CDK8 (IC50 = 74.4 nM). In vitro and in vivo studies indicated that CR16 could enhance the transcriptional activity of AP-1, augment the abundance of IL-10, and affect CDK8-related signaling pathways including TLR7/NF-κB/MAPK and IL-10-JAK1-STAT3 pathways. In addition, CR16 showed potent therapeutic effect in an animal model of IBD.


Assuntos
Interleucina-10 , Inibidores de Proteínas Quinases , Animais , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Interleucina-10/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais , Fator de Transcrição AP-1
20.
Proc Natl Acad Sci U S A ; 117(6): 2894-2905, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988137

RESUMO

The Mediator kinase module regulates eukaryotic transcription by phosphorylating transcription-related targets and by modulating the association of Mediator and RNA polymerase II. The activity of its catalytic core, cyclin-dependent kinase 8 (CDK8), is controlled by Cyclin C and regulatory subunit MED12, with its deregulation contributing to numerous malignancies. Here, we combine in vitro biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to describe the binding location of the N-terminal segment of MED12 on the CDK8/Cyclin C complex and to gain mechanistic insights into the activation of CDK8 by MED12. Our data demonstrate that the N-terminal portion of MED12 wraps around CDK8, whereby it positions an "activation helix" close to the T-loop of CDK8 for its activation. Intriguingly, mutations in the activation helix that are frequently found in cancers do not diminish the affinity of MED12 for CDK8, yet likely alter the exact positioning of the activation helix. Furthermore, we find the transcriptome-wide gene-expression changes in human cells that result from a mutation in the MED12 activation helix to correlate with deregulated genes in breast and colon cancer. Finally, functional assays in the presence of kinase inhibitors reveal that binding of MED12 remodels the active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type II kinase inhibitors. Taken together, our results not only allow us to propose a revised model of how CDK8 activity is regulated by MED12, but also offer a path forward in developing small molecules that target CDK8 in its MED12-bound form.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Complexo Mediador/metabolismo , Domínio Catalítico , Ciclina C/genética , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/química , Quinase 8 Dependente de Ciclina/genética , Ativação Enzimática , Humanos , Complexo Mediador/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA