Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(2): 696-702, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175193

RESUMO

Selectively achieving the photoreduction of carbon dioxide (CO2) to methane (CH4) remains a significant challenge, which primarily arises from the complexity of the protonation process. In this work, we designed metal-vacancy pair sites in defective metal oxide semiconductors, which anchor the reactive intermediates with a bridged linkage for the selective protonation to produce CH4. As an example, oxygen-deficient Nb2O5 nanosheets are synthesized, in which the niobium-oxygen vacancy pair sites are demonstrated by X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra. In situ Fourier transform infrared spectroscopy monitors the *CH3O intermediate, a key intermediate for CH4 production, during the CO2 photoreduction in oxygen-deficient Nb2O5 nanosheets. Importantly, the built metal-vacancy pair sites regulate the *CH3O formation step as a spontaneous process, making the reduction of CO2 to CH4 the preferred method. Therefore, the oxygen-deficient Nb2O5 nanosheets exhibit a CH4 formation rate of 19.14 µmol g-1 h-1, with an electron selectivity of ∼94.1%.

2.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564191

RESUMO

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

3.
J Comput Chem ; 45(17): 1515-1524, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38485224

RESUMO

This study employs grand canonical Monte Carlo (GCMC) simulations to investigate the impact of functional group modifications (CH3, OH, NH2, and OLi) on the adsorption performance of CH4/N2 on Ni-MOF-74. The results revealed that functional group modifications significantly increased the adsorption capacity of Ni-MOF-74 for both CH4 and N2. The packed methyl groups in CH3-Ni-MOF-74 create an environment conducive to CH4, leading to the highest CH4 adsorption capacity. The electrostatic potential distribution indicates that the strong electron-donating effect introduced by the alkali metal Li results in the highest electrostatic potential gradient in Li-O-Ni-MOF-74, leading to the strongest adsorption of N2, this is unfavorable for CH4/N2 separation. At 1500 kPa the selectivity order of adsorbents for mixed gases was as follows: CH3-Ni-MOF-74 > NH2-Ni-MOF-74 > OH-Ni-MOF-74 > Ni-MOF-74 > Li-O-Ni-MOF-74. This study highlights that CH3-Ni-MOF-74 possesses optimal CH4 selectivity and adsorption performance. Given the current lack of research on functionalized MOF-74 for the separation of CH4 and N2, the findings of this study will serve as a theoretical guide and provide references for the applications of CH4 adsorption and CH4/N2 separation.

4.
Small ; 20(16): e2306325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032161

RESUMO

Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.

5.
Small ; 20(14): e2309360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990358

RESUMO

Membrane-based separation process for unconventional natural gas purification (mainly N2/CH4 separation) has attracted more attention due to its considerable economic benefits. However, the majority of separation membranes at this stage, particularly N2-selective membranes, achieve the desired separation target by mainly relying on the diffusivity-selectivity mechanism. To overcome the limitation of a single mechanism, 2D lamellar MXene membranes with a double selectivity mechanism are prepared to enhance N2 permeance and N2/CH4 selectivity via introducing unsaturated metal sites into MXene, which can form specific interactions with N2 molecules and enhance N2 permeation. The resulting membranes exhibit an inspiring N2/CH4 separation performance with an N2 permeance of 344 GPU and N2/CH4 selectivity of 13.76. The collaboration of the double selectivity mechanism provides a new idea for the development of a novel N2-selective membrane for N2 removal and CH4 purification, which further broadens the application prospects of membrane separation technology in the field of unconventional natural gas purification.

6.
New Phytol ; 242(1): 49-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984803

RESUMO

Tree stem methane emissions are important components of lowland forest methane budgets. The potential for species-specific behaviour among co-occurring lowland trees with contrasting bark characteristics has not been investigated. We compare bark-mediated methane transport in two common lowland species of contrasting bark characteristics (Melaleuca quinquenervia featuring spongy/layered bark with longitudinally continuous airspaces and Casuarina glauca featuring hard/dense common bark) through several manipulative experiments. First, the progressive cutting through M. quinquenervia bark layers caused exponential increases in methane fluxes (c. 3 orders of magnitude); however, sapwood-only fluxes were lower, suggesting that upward/axial methane transport occurs between bark layers. Second, concentrated methane pulse-injections into exposed M. quinquenervia bark, revealed rapid axial methane transport rates (1.42 mm s-1 ), which were further supported through laboratory-simulated experiments (1.41 mm s-1 ). Laboratory-simulated radial CH4 diffusion rates (through bark) were c. 20-times slower. Finally, girdling M. quinquenervia stems caused a near-instantaneous decrease in methane flux immediately above the cut. By contrast, girdling C. glauca displayed persistent, though diminished, methane fluxes. Overall, the experiments revealed evidence for rapid 'between-bark' methane transport independent from the transpiration stream in M. quinquenervia, which facilitates diffusive axial transport from the rhizosphere and/or sapwood sources. This contrasts with the slower, radial 'through-bark' diffusive-dominated gas transportation in C. glauca.


Assuntos
Melaleuca , Árvores , Metano , Casca de Planta , Florestas , Dióxido de Carbono , Solo
7.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501699

RESUMO

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Assuntos
Sequestro de Carbono , Ecossistema , Dióxido de Carbono/análise , Suécia , Solo/química , Florestas , Metano/análise
8.
Glob Chang Biol ; 30(1): e17033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273530

RESUMO

Global climate warming could affect the methane (CH4 ) and nitrous oxide (N2 O) fluxes between soils and the atmosphere, but how CH4 and N2 O fluxes respond to whole-soil warming is unclear. Here, we for the first time investigated the effects of whole-soil warming on CH4 and N2 O fluxes in an alpine grassland ecosystem on the Tibetan Plateau, and also studied the effects of experimental warming on CH4 and N2 O fluxes across terrestrial ecosystems through a global-scale meta-analysis. The whole-soil warming (0-100 cm, +4°C) significantly elevated soil N2 O emission by 101%, but had a minor effect on soil CH4 uptake. However, the meta-analysis revealed that experimental warming did not significantly alter CH4 and N2 O fluxes, and it may be that most field warming experiments could only heat the surface soils. Moreover, the warming-induced higher plant litter and available N in soils may be the main reason for the higher N2 O emission under whole-soil warming in the alpine grassland. We need to pay more attention to the long-term response of greenhouse gases (including CH4 and N2 O fluxes) from different soil depths to whole-soil warming over year-round, which could help us more accurately assess and predict the ecosystem-climate feedback under realistic warming scenarios in the future.


Assuntos
Ecossistema , Solo , Pradaria , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano
9.
Glob Chang Biol ; 30(1): e16999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921241

RESUMO

Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2 ) and methane (CH4 ). The radiocarbon content (14 C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14 C and stable C (δ13 C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2 . Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%-75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Humanos , Idoso , Dióxido de Carbono/análise , Ciclo do Carbono , Solo , Mudança Climática
10.
Environ Sci Technol ; 58(26): 11386-11399, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872476

RESUMO

China's dairy farming is undergoing a critical transition from extensive to industrial systems. To achieve sustainable milk production within China's dual-carbon goals, understanding the multidimensional impacts of industrialization on greenhouse gas (GHG) emissions is imperative. This study comprehensively analyzed the implications of China's dairy industrialization on GHG emissions and explored future mitigation potential. Results indicated that industrial systems exhibited lower methane but higher carbon dioxide intensities, with net GHG intensity lower than other systems. During 2002-2020, China's milk production increased by 165%, while GHG emissions increased by 105% to 50.27 Tg CO2eq, accompanying an industrialization rate increased from 16% to 75%. The industrialization progress played a mitigating effect on GHG primarily through intensification within individual production systems before 2008 and transformation between systems post-2008. However, the industrialization's effect was relatively modest compared to other socio-economic factors. By 2030, 11.8 Tg CO2eq will be triggered by predicted milk production growth, but only 0.6 Tg can be offset by system transformation. Integrating measures to improve feed, herd, and manure management on industrial farms could decouple GHG emissions from milk production and achieve a carbon peak before 2030. We suggest transforming to improved industrial systems as a necessary step toward sustainable livestock production.


Assuntos
Indústria de Laticínios , Gases de Efeito Estufa , China , Dióxido de Carbono/análise , Animais , Desenvolvimento Industrial , Metano , Leite/química , Efeito Estufa
11.
Environ Res ; 245: 117959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123047

RESUMO

Lake eutrophication mitigation measures have been implemented by ecological water diversion, however, the responses of carbon cycle to the human-derived hydrologic process still remains unclear. With a famous river-to-lake water diversion activity at eutrophic Lake Taihu, we attempted to fill the knowledge gap with integrative field measurements (2011-2017) of gas carbon (CO2 and CH4) flux, including CO2-equivalent, and dissolved carbon (DOC and DIC) at water-receiving zone and reference zone. Overall, results showed the artificial water diversion activity increased gas carbon emissions. At water-receiving zone, total gas carbon (expressed as CO2-equivalent) emissions increased significantly due to the occurring of water diversion, with CO2 flux increasing from 9.31 ± 16.28 to 18.16 ± 12.96 mmol C m-2 d-1. Meanwhile, CH4 emissions at water-receiving zone (0.06 ± 0.05 mmol C m-2 d-1) was double of that at reference zone. Water diversion decreased DOC but increased DIC especially at inflowing river mouth. Temporal variability of carbon emissions and dissolved carbon were linked to water temperature, chlorophyll a, and nutrient, but less or negligible dependency on these environment variables were found with diversion occurring. Water diversion may increase gas carbon production via stimulating DOC mineralization with nutrient enrichment, which potentially contribute to increasing carbon emissions and decreasing DOC at the same time and the significant correlation between CO2 flux and CH4 flux. Our study provided new insights into carbon biogeochemical processes, which may help to predict carbon fate under hydrologic changes of lakes.


Assuntos
Lagos , Água , Humanos , Carbono , Dióxido de Carbono/análise , Clorofila A , China , Metano/análise
12.
Appl Microbiol Biotechnol ; 108(1): 60, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183483

RESUMO

The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.


Assuntos
Euryarchaeota , Gases de Efeito Estufa , Ecossistema , Agricultura , Biotecnologia , Carbono , Metano
13.
Anim Biotechnol ; 35(1): 2362677, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38860914

RESUMO

Ruminant animals, such as dairy cattle, produce CH4, which contributes to global warming emissions and reduces dietary energy for the cows. While the carbon foot print of milk production varies based on production systems, milk yield and farm management practices, enteric fermentation, and manure management are major contributors togreenhouse gas emissions from dairy cattle. Recent emerging evidence has revealed the existence of genetic variation for CH4 emission traits among dairy cattle, suggests their potential inclusion in breeding goals and genetic selection programs. Advancements in high-throughput sequencing technologies and analytical techniques have enabled the identification of potential metabolic biomarkers, candidate genes, and SNPs linked to methane emissions. Indeed, this review critically examines our current understanding of carbon foot print in milk production, major emission sources, rumen microbial community and enteric fermentation, and the genetic architecture of methane emission traits in dairy cattle. It also emphasizes important implications for breeding strategies aimed at halting methane emissions through selective breeding, microbiome driven breeding, breeding for feed efficiency, and breeding by gene editing.


Assuntos
Cruzamento , Metano , Animais , Metano/metabolismo , Bovinos/genética , Indústria de Laticínios/métodos , Feminino
14.
J Dairy Sci ; 107(2): 978-991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709036

RESUMO

Data on the enteric methane emissions of individual cows are useful not just in assisting management decisions and calculating herd inventories but also as inputs for animal genetic evaluations. Data generation for many animal characteristics, including enteric methane emissions, can be expensive and time consuming, so being able to extract as much information as possible from available samples or data sources is worthy of investigation. The objective of the present study was to attempt to predict individual cow methane emissions from the information contained within milk samples, specifically the spectrum of light transmittance across different wavelengths of the mid-infrared (MIR) region of the electromagnetic spectrum. A total of 93,888 individual spot measures of methane (i.e., individual samples of an animal's breath when using the GreenFeed technology) from 384 lactations on 277 grazing dairy cows were collapsed into weekly averages expressed as grams per day; each weekly average coincided with a MIR spectral analysis of a morning or evening individual cow milk sample. Associations between the spectra and enteric methane measures were performed separately using partial least squares regression or neural networks with different tuning parameters evaluated. Several alternative definitions of the enteric methane phenotype (i.e., average enteric methane in the 6 d preceding or 6 d following taking the milk sample or the average of the 6 d before and after the milk sample, all of which also included the enteric methane emitted on the day of milk sampling), the candidate model features (e.g., milk yield, milk composition, and milk MIR) as well as validation strategy (i.e., cross-validation or leave-one-experimental treatment-out) were evaluated. Irrespective of the validation method, the prediction accuracy was best when the average of the milk MIR from the morning and evening milk sample was used and the prediction model was developed using neural networks; concurrently including milk yield and days in milk in the prediction model generated superior predictions relative to just the spectral information alone. Furthermore, prediction accuracy was best when the enteric methane phenotype was the average of at least 20 methane spot measures across a 6-d period flanking each side of the milk sample with associated spectral data. Based on the strategy that achieved the best accuracy of prediction, the correlation between the actual and predicted daily methane emissions when based on 4-fold cross-validation varied per validation stratum from 0.68 to 0.75; the corresponding range when validated on each of the 8 different experimental treatments focusing on alternative pasture grazing systems represented in the dataset varied from 0.55 to 0.71. The root mean square error of prediction across the 4-folds of cross-validation was 37.46 g/d, whereas the root mean square error averaged across all folds of leave-one-treatment-out was 37.50 g/d. Results suggest that even with the likely measurement errors contained within the MIR spectrum and gold standard enteric methane phenotype, enteric methane can be reasonably well predicted from the infrared spectrum of milk samples. What is yet to be established, however, is whether (a) genetic variation exists in this predicted enteric methane phenotype and (b) selection on estimates of genetic merit for this phenotype translate to actual phenotypic differences in enteric methane emissions.


Assuntos
Líquidos Corporais , Leite , Feminino , Bovinos , Animais , Leite/química , Metano/análise , Lactação , Líquidos Corporais/química , Projetos de Pesquisa , Dieta/veterinária
15.
J Dairy Res ; 91(1): 25-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38706314

RESUMO

The aim of the study was to evaluate the effect of total mixed ration particle size (length) and breed of cow on intake dynamics, animal performance and CH4 emissions, comparing high yielding Holstein and low yielding Girolando cows. The experimental design was 2 × 2 Latin Square arranged as a crossover factorial scheme with two diets (short particle size, SPS and long particle size, LPS) and the two breed compositions. The design comprised two periods of 26 d each, where all data collection was performed at cow level. No influence of the particle size occurred for the passage rate, neutral detergent fiber digestibility, performance and milk composition, methane emissions or ruminal fermentation parameters. Girolando cows had greater dry matter intake (DMI) when fed SPS, while Holsteins had the same (P < 0.05). Girolando cows had lower dry matter digestibility when fed LPS compared to SPS, while Holsteins had the opposite effect (P < 0.05). Also, the digestibility of crude protein and non-fibrous carbohydrates decreased in Girolando cows fed LPS, but not in Holsteins (P < 0.05). Girolando cows reduced DMI by 10.6% when fed LPS diet (P < 0.05). Girolando had an increased eating rate (+24 g of DM/min; P < 0.05) compared to Holstein cows, but Holstein cows had a lower CH4 intensity (by 29.7%: P < 0.05). Girolando cows increased the dry matter intake when fed a diet with short particle size, while the same did not happen in Holsteins. Dry matter digestibility increased in Holsteins when fed long particle size, while the opposite was observed in Girolando cows. Nutrient digestibility was reduced in Girolando cows when fed short particle size. Particle size did not influence eating time, eating rate, feed trough visits, visits with intake, milk yield and composition regardless of the breed. Reducing particle size increased CH4 intensity in both breeds.


Assuntos
Ração Animal , Dieta , Digestão , Lactação , Leite , Tamanho da Partícula , Animais , Bovinos/fisiologia , Feminino , Digestão/fisiologia , Lactação/fisiologia , Leite/química , Dieta/veterinária , Ração Animal/análise , Rúmen/fisiologia , Metano/análise , Fermentação , Fenômenos Fisiológicos da Nutrição Animal , Ingestão de Alimentos/fisiologia
16.
J Environ Manage ; 355: 120487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422848

RESUMO

Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.


Assuntos
Eliminação de Resíduos , Solo , Solo/química , Metano/química , Instalações de Eliminação de Resíduos , Carvão Vegetal/química , Microbiologia do Solo , Oxirredução
17.
J Environ Manage ; 354: 120355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364542

RESUMO

This study aimed to investigate effects of continuous low-speed biogas agitation on the anaerobic digestion (AD) performance and microbial community of high-solids pig manure (total solids content of 10%). Our results reveal that at a biogas agitation intensity of 1.10 L/g feed VS/d, CH4 production increased by 16.67% compared to the non-agitated condition, the removal efficiency of H2S reached 63.18%, and the abundance of Methanosarcina was the highest. The presence of Hungateiclostridiaceae was associated with H2S concentrations. An increasing biogas agitation intensity led to an elevated pH and a decreased oxidation-reduction potential (ORP). Acetate concentrations, pH, and ORP values indicated changes in H2S concentrations. Sedimentibacter demonstrates the potential to indicate biogas agitation intensity and pH. We demonstrate that continuous low-speed biogas agitation effectively increases CH4 production and reduces H2S concentrations in AD of high-solids pig manure, offering a potential technical pathway for developing AD processes for high-solids pig manure, it also demonstrates that AD process can reduce the risk of pathogen and parasite transmission.


Assuntos
Reatores Biológicos , Microbiota , Suínos , Animais , Anaerobiose , Biocombustíveis , Esterco , Metano
18.
J Environ Manage ; 356: 120718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537467

RESUMO

Global climate change is predicted to increase exogenous N input into terrestrial ecosystems, leading to significant changes in soil C-cycling. However, it remains largely unknown how these changes affect soil C-cycling, especially in semi-arid grasslands, which are one of the most vulnerable ecosystems. Here, based on a 3-year field study involving N additions (0, 25, 50, and 100 kg ha-1 yr-1 of urea) in a semi-arid grassland on the Loess Plateau, we investigated the impact of urea fertilization on plant characteristics, soil properties, CO2 and CH4 emissions, and microbial C cycling genes. The compositions of genes involved in C cycling, including C fixation, degradation, methanogenesis, and methane oxidation, were determined using metagenomics analysis. We found that N enrichment increased both above- and belowground biomasses and soil organic C content, but this positive effect was weakened when excessive N was input (N100). N enrichment also altered the C-cycling processes by modifying C-cycle-related genes, specifically stimulating the Calvin cycle C-fixation process, which led to an increase in the relative abundance of cbbS, prkB, and cbbL genes. However, it had no significant effect on the Reductive citrate cycle and 3-hydroxypropionate bi-cycle. N enrichment led to higher soil CO2 and CH4 emissions compared to treatments without added N. This increase showed significant correlations with C degradation genes (bglA, per, and lpo), methanogenesis genes (mch, ftr, and mcr), methane oxidation genes (pmoA, pmoB, and pmoC), and the abundance of microbial taxa harboring these genes. Microbial C-cycling genes were primarily influenced by N-induced changes in soil properties. Specifically, reduced soil pH largely explained the alterations in methane metabolism, while elevated available N levels were mainly responsible for the shift in C fixation and C degradation genes. Our results suggest that soil N enrichment enhances microbial C-cycling processes and soil CO2 and CH4 emissions in semi-arid ecosystems, which contributes to more accurate predictions of ecosystem C-cycling under future climate change.


Assuntos
Ecossistema , Pradaria , Dióxido de Carbono/análise , Solo/química , Metano/análise , Fertilização
19.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675691

RESUMO

The properties of supports (such as oxygen vacancies, oxygen species properties, etc.) significantly impact the anti-carbon ability due to their promotional effect on the activation of CO2 in dry reforming of methane (DRM). Herein, pyrochlore-type La2Ce2O7 compounds prepared using co-precipitation (CP), glycine nitrate combustion (GNC) and sol-gel (S-G) methods, which have highly thermal stability and unique oxygen mobility, are applied as supports to prepare Ni-based catalysts for DRM. The effect of the calcining temperature (500, 600 and 700 °C) on La2Ce2O7(CP) has also been investigated. Based on multi-technique characterizations, it is found that the synthesis method and calcination temperature can influence the particle size of the La2Ce2O7 support. Changes in particle size strongly modulate the pore volume, specific surface area and numbers of surface oxygen vacancies of the La2Ce2O7 support. As a result, the distribution of supported Ni components is affected due to the different metal-support interaction, thereby altering the activity of the catalysts for cracking CH4. Moreover, the supports' abilities to adsorb and activate CO2 are also adjusted accordingly, accelerating the removal of the carbon deposited on the catalysts. Finally, La2Ce2O7(CP 600) with an appropriate particle size exhibits the best catalytic activity and stability in DRM.

20.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930815

RESUMO

Efficient separation of CH4 from N2 is essential for the purification of methane from nitrogen. In order to address this problem, composite materials consisting of rod-shaped SBA-15-based UiO-66-Br2 were synthesized for the purpose of separating a CH4/N2 mixture. The materials were characterized via PXRD, N2 adsorption-desorption, SEM, TEM, FT-IR, and TGA. The adsorption isotherms of CH4 and N2 under standard pressure conditions for the composites were determined and subsequently compared. The study revealed that the composites were formed through the growth of MOF nanocrystals on the surfaces of the SBA-15 matrix. The enhancements in surface area and adsorption capacity of hybrid materials were attributed to the structural modifications resulting from the interactions between surface silanol groups and metal centers. The selectivity of the composites towards a gas mixture of CH4 and N2 was assessed utilizing the Langmuir adsorption equation. The results of the analysis revealed that the U6B2S5/SBA-15 sample exhibited the greatest selectivity for CH4/N2 adsorption compared to the other samples, with an adsorption selectivity parameter (S) of 20.06. Additional research is necessary to enhance the enrichment of methane from CH4/N2 mixtures using SBA-15-based metal-organic framework materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA