Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815580

RESUMO

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Assuntos
Proteínas de Ciclo Celular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética
2.
Annu Rev Immunol ; 33: 257-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25581309

RESUMO

Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.


Assuntos
Imunidade Inata/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Vias Biossintéticas , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Ligantes , Transdução de Sinais
3.
Mol Cell ; 81(19): 3979-3991.e4, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375584

RESUMO

Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , DNA Fúngico/genética , Hereditariedade , Heterocromatina/genética , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/genética , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/metabolismo , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Mol Cell ; 77(1): 51-66.e8, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31784357

RESUMO

Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Heterocromatina/metabolismo , DNA Ribossômico/metabolismo , Epigênese Genética/fisiologia , Eucromatina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteômica/métodos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica/fisiologia
5.
Infect Immun ; 92(6): e0002424, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700335

RESUMO

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Criptococose , Cryptococcus , Interferon gama , Lectinas Tipo C , Pulmão , Animais , Criptococose/imunologia , Criptococose/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Cryptococcus/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Memória Imunológica , Imunidade Inata , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia
6.
Mol Cell ; 64(6): 1088-1101, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984744

RESUMO

Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.


Assuntos
Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Eucromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , RNA Interferente Pequeno/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Eucromatina/ultraestrutura , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/metabolismo , Metiltransferases/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase de Repouso do Ciclo Celular/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica
7.
BMC Biotechnol ; 23(1): 50, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031036

RESUMO

BACKGROUND: Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive. RESULTS: In this study, we identified a Zn2Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi. CONCLUSIONS: These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.


Assuntos
Celulase , Celulases , Neurospora crassa , Celulase/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Histidina/genética , Histidina/metabolismo , Leucina/genética , Leucina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Celulose/metabolismo , Celulases/genética , Nitrogênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
8.
J Med Virol ; 95(2): e28546, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36734063

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by the SFTS virus (SFTSV). This study aimed to evaluate the predictive power of C-reactive protein to lymphocyte ratio (CLR) and establish an early-warning model for SFTS mortality. We retrospectively analyzed hospitalized SFTS patients in six clinical centers from May 2011 to 2022. The efficacy of CLR prediction was evaluated by the receiver operating characteristic (ROC) analysis. A nomogram was established and validated. Eight hundred and eighty-two SFTS patients (median age 64 years, 48.5% male) were enrolled in this study, with a mortality rate of 17.8%. The area under the ROC curve (AUC) of CLR was 0.878 (95% confidence interval [CI]: 0.850-0.903, p < 0.001), which demonstrates high predictive strength. The least absolute shrinkage and selection operator regression selected seven potential predictors. Multivariate logistic regression analysis determined three independent risk factors, including CLR, to construct the nomogram. The performance of the nomogram displayed excellent discrimination and calibration, with significant net benefits in clinical uses. CLR is a brand-new predictor for SFTS mortality. The nomogram based on CLR can serve as a convenient tool for physicians to identify critical SFTS cases in clinical practice.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Proteína C-Reativa/análise , Estudos Retrospectivos , Fatores de Risco , China
9.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898672

RESUMO

AIMS: Clostridioides difficile infections (CDI) are a major cause of morbidity and mortality in hospitalized patients. A probiotic formulation (Bio-K+) comprised of Lactobacillus acidophilus CL1285, Lacticaseibacillus casei LBC80R, and Lacti. rhamnosus CLR2 strains have been shown to reduce the incidence of CDI and antibiotic-associated diarrhea (AAD). This research aims to therefore elucidate the mechanism of action of the three probiotic strained against C. difficile R20291, independently of the acidification of the environment. . METHODS AND RESULTS: Antitoxin activity was evaluated using ELISA method and the expression of C. difficile genes was evaluated using transcriptomic analysis in co-culture assays conducted in a bioreactor allowing precise control of the pH. The fermentation results demonstrated a decrease for toxin A and many genes directly related to C. difficile virulence were underexpressed in the co-cultures. CONCLUSIONS: The lactobacilli tested could have a role in the motility, the quorum sensing (QS), the survival of the spores, and the germination potential of the spores, which are essential elements for the virulence of C. difficile. .


Assuntos
Clostridioides difficile , Infecções por Clostridium , Probióticos , Humanos , Lactobacillus , Clostridioides difficile/genética , Clostridioides , Lactobacillus acidophilus/genética , Infecções por Clostridium/prevenção & controle , Antibacterianos
10.
Oxf J Leg Stud ; 43(3): 546-573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799977

RESUMO

Children who do not understand the serious wrongness of their actions lack criminal capacity and cannot be convicted. At common law, children under seven are deemed to lack criminal capacity, children over 14 possess full capacity and children between seven and 14 are rebuttably presumed to lack capacity; the prosecution must prove capacity beyond reasonable doubt. Australia has increased the minimum age of criminal responsibility (MACR) to 10 and is considering a further increase. England & Wales and Northern Ireland have raised the MACR to 10 but have abolished the rebuttable presumption: at age 10, all children are assigned full criminal capacity. This article agrees with international calls for the MACR to be raised but argues that it is more important that the rebuttable presumption should be retained and extended. Children's brains and decision-making capacities continue to develop throughout their teenage years at different rates. The rebuttable presumption provides individualised justice for children facing developmental difficulties. To wrongfully convict a child who lacks capacity will unjustly damage their life chances. Where a child does have capacity, a variety of evidence may be available to the prosecution to prove it. If the prosecution fails to discharge the burden, the child should be acquitted. The acquittal may be mistaken, but this error is far less harmful than a wrongful conviction.

11.
BMC Genomics ; 23(1): 830, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517766

RESUMO

BACKGROUND: Structural variations (SVs) have recently become a topic of great interest in the area of genetic diversity and trait regulation. As genomic sequencing technologies have rapidly advanced, longer reads have been used to identify SVs at high resolution and with increased accuracy. It is important to choose a suitable sequencing platform and appropriate sequencing depth for SV detection in the pear genome. RESULTS: In this study, two types of long reads from sequencing platforms, continuous long reads from Pacific Biosciences (PB-CLR) and long reads from Oxford Nanopore Technologies (ONT), were used to comprehensively analyze and compare SVs in the pear genome. The mapping rate of long reads was higher when the program Minimap2 rather than the other three mapping tools (NGMLR, LRA and Winnowmap2) was used. Three SV detection programs (Sniffles_v2, CuteSV, and Nanovar) were compared, and Nanovar had the highest sensitivity in detecting SVs at low sequencing depth (10-15×). A sequencing depth of 15× was suitable for SV detection in the pear genome using Nanovar. SVs detected by Sniffles_v2 and CuteSV with ONT reads had the high overlap with presence/absence variations (PAVs) in the pear cultivars 'Bartlett' and 'Dangshansuli', both of them with 38% of insertions and 55% of deletions overlapping with PAVs at sequencing depth of 30×. For the ONT sequencing data, over 37,526 SVs spanning ~ 28 Mb were identified by all three software packages for the 'Bartlett' and 'Dangshansuli' genomes. Those SVs were annotated and combined with transcriptome profiles derived from 'Bartlett' and 'Dangshansuli' fruit flesh at 60 days after cross-pollination. Several genes related to levels of sugars, acid, stone cells, and aromatic compounds were identified among the SVs. Transcription factors were then predicted among those genes, and results included bHLH, ERF, and MYB genes. CONCLUSION: SV detection is of great significance in exploring phenotypic differences between pear varieties. Our study provides a framework for assessment of different SV software packages and sequencing platforms that can be applied in other plant genome studies. Based on these analyses, ONT sequencing data was determined to be more suitable than PB-CLR for SV detection in the pear genome. This analysis model will facilitate screening of genes related to agronomic traits in other crops.


Assuntos
Nanoporos , Pyrus , Pyrus/genética , Análise de Sequência , Mapeamento Cromossômico , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Variação Estrutural do Genoma , Análise de Sequência de DNA/métodos
12.
Chembiochem ; 23(21): e202200396, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36083789

RESUMO

Protein misfolding and aggregation are hallmarks of many severe neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease. As a supramolecular ligand that binds to lysine and arginine residues, the molecular tweezer CLR01 was found to modify the aggregation pathway of disease-relevant proteins in vitro and in vivo with beneficial effects on toxicity. However, the molecular mechanisms of how tweezers exert these effects remain mainly unknown, hampering further drug development. Here, we investigate the modulation mechanism of unfolding and aggregation pathways of SOD1, which are involved in amyotrophic lateral sclerosis (ALS), by CLR01. Using a truncated version of the wildtype SOD1 protein, SOD1bar , we show that CLR01 acts on the first step of the aggregation pathway, the unfolding of the SOD1 monomer. CLR01 increases, by ∼10 °C, the melting temperatures of the A4V and G41D SOD1 mutants, which are commonly observed mutations in familial ALS. Molecular dynamics simulations and binding free energy calculations as well as native mass spectrometry and mutational studies allowed us to identify K61 and K92 as binding sites for the tweezers to mediate the stability increase. The data suggest that the modulation of SOD1 conformational stability is a promising target for future developments of supramolecular ligands against neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/metabolismo , Dobramento de Proteína , Mutação
13.
Mar Drugs ; 20(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135738

RESUMO

The innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates. Study of the interactions of the most ancient marine multicellular organisms with microorganisms gives us an idea of the evolution of molecular mechanisms of protection against pathogens and reveals new functions of already known proteins in ensuring the body's homeostasis. The review discusses innate immunity mechanisms of protection of marine invertebrate organisms against infections, using the examples of ancient multicellular hydroids, tunicates, echinoderms, and marine worms in the context of searching for analogies with vertebrate innate immunity. Due to the fact that mucous membranes first arose in marine invertebrates that have existed for several hundred million years, study of their innate immune system is both of fundamental importance in terms of understanding molecular mechanisms of host defense, and of practical application, including the search of new antimicrobial agents for subsequent use in medicine, veterinary and biotechnology.


Assuntos
Imunidade Inata , Transdução de Sinais , Receptores de Reconhecimento de Padrão/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362188

RESUMO

Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.


Assuntos
Adrenomedulina , Hormônios Peptídicos , Gravidez , Feminino , Ratos , Humanos , Animais , Proteína 2 Modificadora da Atividade de Receptores , Células Endoteliais , Ratos Endogâmicos SHR , Géis
15.
J Headache Pain ; 23(1): 59, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614383

RESUMO

BACKGROUND: The clinical use of calcitonin gene-related peptide receptor (CGRP-R) antagonists and monoclonal antibodies against CGRP and CGRP-R has offered new treatment possibilities for migraine patients. CGRP activates both the CGRP-R and structurally related amylin 1 receptor (AMY1-R). The relative effect of erenumab and the small-molecule CGRP-R antagonist, rimegepant, towards the CGRP-R and AMY-R needs to be further characterized. METHODS: The effect of CGRP and two CGRP-R antagonists were examined in Xenopus laevis oocytes expressing human CGRP-R, human AMY1-R and their subunits. RESULTS: CGRP administered to receptor expressing oocytes induced a concentration-dependent increase in current with the order of potency CGRP-R> > AMY1-R > calcitonin receptor (CTR). There was no effect on single components of the CGRP-R; calcitonin receptor-like receptor and receptor activity-modifying protein 1. Amylin was only effective on AMY1-R and CTR. Inhibition potencies (pIC50 values) for erenumab on CGRP induced currents were 10.86 and 9.35 for CGRP-R and AMY1-R, respectively. Rimegepant inhibited CGRP induced currents with pIC50 values of 11.30 and 9.91 for CGRP-R and AMY1-R, respectively. CONCLUSION: Our results demonstrate that erenumab and rimegepant are potent antagonists of CGRP-R and AMY1-R with 32- and 25-times preference for the CGRP-R over the AMY1-R, respectively. It is discussed if this difference in affinity between the two receptors is the likely reason why constipation is a common and serious adverse effect during CGRP-R antagonism but less so with CGRP binding antibodies.


Assuntos
Anticorpos Monoclonais Humanizados , Peptídeo Relacionado com Gene de Calcitonina , Piperidinas , Piridinas , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Oócitos/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores da Calcitonina/química , Receptores da Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Xenopus laevis/metabolismo
16.
J Infect Dis ; 224(7): 1219-1224, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33733279

RESUMO

Immunocompromised patients are highly susceptible to invasive aspergillosis. Herein, we identified a homozygous deletion mutation (507 del C) resulting in a frameshift (N170I) and early stop codon in the fungal binding Dectin-2 receptor, in an immunocompromised patient. The mutated form of Dectin-2 was weakly expressed, did not form clusters at/near the cell surface and was functionally defective. Peripheral blood mononuclear cells from this patient were unable to mount a cytokine (tumor necrosis factor, interleukin 6) response to Aspergillus fumigatus, and this first identified Dectin-2-deficient patient died of complications of invasive aspergillosis.


Assuntos
Aspergilose/diagnóstico , Aspergillus fumigatus/isolamento & purificação , Infecções Fúngicas Invasivas , Lectinas Tipo C/genética , Deleção de Sequência/genética , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Evolução Fatal , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/diagnóstico , Infecções Fúngicas Invasivas/tratamento farmacológico
17.
Int Immunol ; 32(10): 673-682, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32415968

RESUMO

C-type lectin receptors (CLRs), pattern recognition receptors (PRRs) with a characteristic carbohydrate recognition domain (CRD) in the extracellular portion, mediate crucial cellular functions upon recognition of glycosylated pathogens and self-glycoproteins. CLEC4A is the only classical CLR that possesses an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM), which possibly transduces negative signals. However, how CLEC4A exerts cellular inhibition remains unclear. Here, we report that the self-interaction of CLEC4A through the CRD is required for the ITIM-mediated suppressive function in conventional dendritic cells (cDCs). Human type 2 cDCs (cDC2) and monocytes display a higher expression of CLEC4A than cDC1 and plasmacytoid DCs (pDCs) as well as B cells. The extracellular portion of CLEC4A specifically binds to a murine cDC cell line expressing CLEC4A, while its extracellular portion lacking the N-glycosylation site or the EPS motif within the CRD reduces their association. Furthermore, the deletion of the EPS motif within the CRD or ITIM in CLEC4A almost completely impairs its suppressive effect on the activation of the murine cDC cell line, whereas the absence of the N-glycosylation site within the CRD exhibits partial inhibition on their activation. On the other hand, antagonistic monoclonal antibody (mAb) to CLEC4A, which inhibits the self-interaction of CLEC4A and its downstream signaling in murine transfectants, enhances the activation of monocytes and monocyte-derived immature DCs upon stimulation with a Toll-like receptor (TLR) ligand. Thus, our findings suggest a pivotal role of the CRD in self-interaction of CLEC4A to elicit the ITIM-mediated inhibitory signal for the control of the function of cDCs.


Assuntos
Carboidratos/imunologia , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Motivo de Ativação do Imunorreceptor Baseado em Tirosina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Reconhecimento de Padrão/imunologia
18.
J Biomed Sci ; 28(1): 46, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116654

RESUMO

Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.


Assuntos
COVID-19/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Armadilhas Extracelulares/imunologia , Lectinas Tipo C/imunologia , SARS-CoV-2/imunologia , Plaquetas/imunologia , Plaquetas/patologia , COVID-19/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Encefalite Japonesa/patologia , Humanos , Ativação Plaquetária/imunologia , Transdução de Sinais/imunologia
19.
Rev Neurol (Paris) ; 177(7): 785-790, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275653

RESUMO

Migraine treatment has reached a new era with the development of drugs that target the trigeminal neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. The CGRP related therapies offer considerable improvements over existing drugs as they are the first to be designed to act on the trigeminal pain system, more specific and with few adverse events. Small molecule CGRP receptor antagonists, such as rimegepant and ubrogepant, are effective for the acute treatment of migraine headache. In contrast, monoclonal antibodies against CGRP or the CGRP receptor are beneficial for the prophylactic treatments in chronic migraine. Here I will provide a historical overview of the long path that led to their successful development. In addition, I will discuss aspects on the biology of CGRP signalling, the role of CGRP in migraine headache, the efficacy of CGRP targeted treatment, and synthesize what currently is known about the role of CGRP in the trigeminovascular system.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Calcitonina , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina
20.
J Headache Pain ; 22(1): 87, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330208

RESUMO

BACKGROUND: the interest of clinical reaseach in polymorphisms and epigenetics in migraine has been growing over the years. Due to the new era of preventative migraine treatment opened by monoclonal antibodies (mAbs) targeting the signaling of the calcitonin-gene related peptide (CGRP), the present systematic review aims at identifying genetic variants occurring along the CGRP pathway and at verifying whether these can affect the clinical features and the course of disease and the responsiveness of patients to therapy. METHODS: the literature search has been conducted consulting the most relevant scientific databases, i.e. PubMed/MEDLINE, Scopus, Web of Science, the Human Genome Epidemiology (HuGE) Published Literature database (Public Health Genomics Knowledge Base) and Clinicaltrials.gov from database inception until April 1, 2021. The process of identification and selection of the studies included in the analysis has followed the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria for systematic reviews and meta-analyses and the guidance from the Human Genome Epidemiology Network for reporting gene-disease associations. RESULTS: the search has retrieved 800 results, among which only 7 studies have met the eligibility criteria for inclusion in the analysis. The latter are case-control studies of genetic association and an exploratory analysis and two polymorphisms have been detected as the most recurring: the rs3781719 (T > C) of the CALC A gene encoding CGRP and the rs7590387 of the gene encoding the receptor activity-modifying protein (RAMP) 1 (C > G). Only one study assessing the methylation pattern with regard to CGRP pathway has been found from the search. No genetic association studies investigating the possible effect of genetic variants affecting CGRP signaling on the responsiveness to the most recent pharmacological approaches, i.e. anti-CGRP(R) mAbs, gepants and ditans, have been published. According to the Human Genome Epidemiology (HuGE) systematic reviews and meta-analyses risk-of-bias score for genetic association studies, the heterogeneity between and across studies and the small sample size do not allow to draw conclusions and prompt future studies. CONCLUSIONS: adequately powered, good quality genetic association studies are needed to understand the impact of genetic variants affecting the pathway of CGRP on migraine susceptibility and clinical manifestation and to predict the response to therapy in terms of efficacy and safety.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Anticorpos Monoclonais , Calcitonina , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Humanos , Transtornos de Enxaqueca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA