Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3653-3660, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36848135

RESUMO

Delivery of proteins and protein-nucleic acid constructs into live cells enables a wide range of applications from gene editing to cell-based therapies and intracellular sensing. However, electroporation-based protein delivery remains challenging due to the large sizes of proteins, their low surface charge, and susceptibility to conformational changes that result in loss of function. Here, we use a nanochannel-based localized electroporation platform with multiplexing capabilities to optimize the intracellular delivery of large proteins (ß-galactosidase, 472 kDa, 75.38% efficiency), protein-nucleic acid conjugates (protein spherical nucleic acids (ProSNA), 668 kDa, 80.25% efficiency), and Cas9-ribonucleoprotein complex (160 kDa, ∼60% knock-out and ∼24% knock-in) while retaining functionality post-delivery. Importantly, we delivered the largest protein to date using a localized electroporation platform and showed a nearly 2-fold improvement in gene editing efficiencies compared to previous reports. Furthermore, using confocal microscopy, we observed enhanced cytosolic delivery of ProSNAs, which may expand opportunities for detection and therapy.


Assuntos
Sistemas CRISPR-Cas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Edição de Genes , Eletroporação , Proteínas/genética
2.
Hum Mutat ; 43(12): 2295-2307, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054288

RESUMO

Functional assays provide important evidence for classifying the disease significance of germline variants in DNA mismatch repair genes. Numerous laboratories, including our own, have developed functional assays to study mismatch repair gene variants. However, previous assays are limited due to the model system employed, the manner of gene expression, or the environment in which function is assessed. Here, we developed a human cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. Using clustered regularly interspaced short palindromic repeats gene editing, we knocked in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact on RNA and protein, including their ability to prevent microsatellite instability and instigate a DNA damage response. A statistical clustering analysis determined the range of functions associated with known pathogenic or benign variants, and linear regression was performed using existing odds in favor of pathogenicity scores for these control variants to calibrate our functional assay results. By converting the functional outputs into a single odds in favor of pathogenicity score, variant classification expert panels can use these results to readily reassess these VUS. Ultimately, this information will guide proper diagnosis and disease management for suspected Lynch syndrome patients.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Reparo de Erro de Pareamento de DNA , Humanos , Reparo de Erro de Pareamento de DNA/genética , Proteína 1 Homóloga a MutL/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Instabilidade de Microssatélites , Mutação em Linhagem Germinativa/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
3.
Mol Microbiol ; 116(2): 674-689, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34061384

RESUMO

Nitroheterocycles represent an important class of compound used to treat trypanosomiasis. They often function as prodrugs and can undergo type I nitroreductase (NTR1)-mediated activation before promoting their antiparasitic activities although the nature of these downstream effects has yet to be determined. Here, we show that in an NTR1-dependent process, benznidazole promotes DNA damage in the nuclear genome of Trypanosoma brucei, providing the first direct link between activation of this prodrug and a downstream trypanocidal mechanism. Phenotypic and protein expression studies revealed that components of the trypanosome's homologous recombination (HR) repair pathway (TbMRE11, γH2A, TbRAD51) cooperate to resolve the benznidazole-induced damage, indicating that the prodrug-induced lesions are most likely double stand DNA breaks, while the sequence/recruitment kinetics of these factors parallels that in other eukaryotes HR systems. When extended to other NTR1-activated 2-nitroimidazoles, some were shown to promote DNA damage. Intriguingly, the lesions induced by these required TbMRE11 and TbCSB activities to fix leading us to postulate that TbCSB may operate in systems other than the transcription-coupled nucleotide excision repair pathway. Understanding how existing trypanosomal drugs work will aid future drug design and help unlock novel reactions/pathways that could be exploited as targets for therapeutic intervention.


Assuntos
Ativação Metabólica/fisiologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/genética , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Genoma de Protozoário/efeitos dos fármacos , Genoma de Protozoário/genética , Nitrorredutases/metabolismo , Pró-Fármacos/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
Infection ; 49(3): 377-385, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33393066

RESUMO

PURPOSE: CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases. METHODS: We searched Pubmed and Google Scholar for CRISPR-based strategies in the diagnosis and treatment of infectious diseases. Reference lists were reviewed and synthesized for narrative review. RESULTS: CRISPR-based strategies represent a novel approach to many challenging infectious diseases. CRISPR technologies can be harnessed to create rapid, low-cost diagnostic systems, as well as to identify drug-resistance genes. Therapeutic strategies, such as CRISPR systems that cleave integrated viral genomes or that target resistant bacteria, are in development. CRISPR-based therapies for emerging viruses, such as SARS-CoV-2, have also been proposed. Finally, CRISPR systems can be used to reprogram human B cells to produce neutralizing antibodies. The risks of CRISPR-based therapies include off-target and on-target modifications. Strategies to control these risks are being developed and a phase 1 clinical trials of CRISPR-based therapies for cancer and monogenic diseases are already underway. CONCLUSIONS: CRISPR systems have broad applicability in the field of infectious diseases and may offer solutions to many of the most challenging human infections.


Assuntos
Sistemas CRISPR-Cas , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Edição de Genes , Humanos , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Vírus/genética , Vírus/isolamento & purificação , Vírus/patogenicidade
5.
Adv Exp Med Biol ; 1184: 381-391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096051

RESUMO

Animal models have been instrumental in reproducing key aspects of human tauopathy. In pursuing these efforts, the mouse continues to have a prominent role. In this chapter, we focus on models that overexpress wild-type or mutant forms of tau, the latter being based on mutations found in familial cases of frontotemporal dementia. We review some of these models in more detail and discuss what they have revealed about the underlying pathomechanisms, as well as highlighting new developments that exploit gene editing tools such as TALEN and CRISPR. Interestingly, when investigating the role of tau in impairing cellular functions, common themes emerge. Because tau is a scaffolding protein that aggregates in the somatodendritic domain under pathological conditions, it traps proteins such as parkin and JIP1, preventing them from executing their normal function in mitophagy and axonal transport, respectively. Another aspect is the emerging role of tau in the translational machinery and the finding that the somatodendritic accumulation of tau in Alzheimer's disease may in part be due to the induction of the de novo synthesis of tau by amyloid-ß via the Fyn/ERK/S6 pathway. We further discuss treatment strategies such as tau-based vaccinations and therapeutic ultrasound and conclude by discussing whether there is a future for animal models of tauopathies.


Assuntos
Modelos Animais de Doenças , Tauopatias/metabolismo , Tauopatias/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Tauopatias/genética , Tauopatias/patologia , Ultrassonografia de Intervenção , Vacinas/uso terapêutico , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Crit Rev Biotechnol ; 37(7): 924-932, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28100080

RESUMO

The emergence of new gene-editing technologies is profoundly transforming human therapeutics, agriculture, and industrial biotechnology. Advances in clustered regularly interspaced short palindromic repeats (CRISPR) have created a fertile environment for mass-scale manufacturing of cost-effective products ranging from basic research to translational medicine. In our analyses, we evaluated the patent landscape of gene-editing technologies and found that in comparison to earlier gene-editing techniques, CRISPR has gained significant traction and this has established dominance. Although most of the gene-editing technologies originated from the industry, CRISPR has been pioneered by academic research institutions. The spinout of CRISPR biotechnology companies from academic institutions demonstrates a shift in entrepreneurship strategies that were previously led by the industry. These academic institutions, and their subsequent companies, are competing to generate comprehensive intellectual property portfolios to rapidly commercialize CRISPR products. Our analysis shows that the emergence of CRISPR has resulted in a fivefold increase in genome-editing bioenterprise investment over the last year. This entrepreneurial movement has spurred a global biotechnology revolution in the realization of novel gene-editing technologies. This global shift in bioenterprise will continue to grow as the demand for personalized medicine, genetically modified crops and environmentally sustainable biofuels increases. However, the monopolization of intellectual property, negative public perception of genetic engineering and ambiguous regulatory policies may limit the growth of these market segments.


Assuntos
Edição de Genes , Biotecnologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas , Engenharia Genética
7.
Trends Biotechnol ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462750

RESUMO

The CRISPR-Cas9 system has been widely applied for industrial microbiology but is not effective in certain microorganisms. This forum explores the strategies aimed at overcoming these challenges, including the use of the Cas12a system, Cas9 variants, and non-CRISPR techniques, to provide more effective strategies for expanding applications in microbial engineering.

8.
ACS Synth Biol ; 13(10): 3413-3429, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39375864

RESUMO

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Redes Reguladoras de Genes , Aprendizado de Máquina , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
9.
bioRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39386541

RESUMO

CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. Viral vectors risk genomic integration and immunogenicity while non-viral delivery systems are challenging to adapt to different CRISPR cargos, and many are highly cytotoxic. The arginine-alanine-leucine-alanine (RALA) cell penetrating peptide is an amphiphilic peptide that self-assembles into nanoparticles through electrostatic interactions with negatively charged molecules before delivering them across the cell membrane. This system has been used to deliver DNAs, RNAs, and small anionic molecules to primary cells with lower cytotoxicity compared to alternative non-viral approaches. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA was able to effectively encapsulate and deliver CRISPR in DNA, RNA, and ribonucleic protein (RNP) formats to primary mesenchymal stem cells (MSCs). Comparisons between RALA and commercially available reagents revealed superior cell viability leading to higher numbers of transfected cells and the maintenance of cell proliferative capacity. We then used the RALA peptide for the knock-in and knock-out of reporter genes into the MSC genome as well as for the transcriptional activation of therapeutically relevant genes. In summary, we establish RALA as a powerful tool for safer and effective delivery of CRISPR machinery in multiple cargo formats for a wide range of gene editing strategies.

10.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260654

RESUMO

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

11.
Res Sq ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257970

RESUMO

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

12.
Cell Rep ; 43(8): 114637, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154337

RESUMO

Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.


Assuntos
Astrócitos , Gliose , Animais , Gliose/patologia , Gliose/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Cromatina/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Montagem e Desmontagem da Cromatina , Microglia/metabolismo , Microglia/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/farmacologia , Humanos , Camundongos Knockout , Masculino , Proliferação de Células
13.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38642550

RESUMO

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Criança , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Miosinas/metabolismo , Miosinas/genética , Masculino , Feminino , Sarcômeros/metabolismo , Sarcômeros/genética
14.
JACC Basic Transl Sci ; 8(10): 1357-1378, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094680

RESUMO

A specific genetic variant associated with atrial fibrillation risk, rs17171731, was identified as a regulatory variant responsible for controlling FAM13B expression. The atrial fibrillation risk allele decreases FAM13B expression, whose knockdown alters the expression of many genes in stem cell-derived cardiomyocytes, including SCN2B, and led to pro-arrhythmogenic changes in the late sodium current and Ca2+ cycling. Fam13b knockout mice had increased P-wave and QT interval duration and were more susceptible to pacing-induced arrhythmias vs control mice. FAM13B expression, its regulation, and downstream effects are potential targets for investigation of patient-specific therapeutics.

15.
Adv Mater ; 35(6): e2208018, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445243

RESUMO

CRISPR genome editing can potentially treat the root causes of many genetic diseases, including central nervous system (CNS) disorders. However, the promise of brain-targeted therapeutic genome editing relies on the efficient delivery of biologics bypassing the blood-brain barrier (BBB), which represents a major challenge in the development of CRISPR therapeutics. We created and screened a library of glutathione (GSH)-responsive silica nanocapsules (SNCs) for brain targeted delivery of biologics via systemic administration. In vivo studies demonstrate that systemically delivered SNCs conjugated with glucose and rabies virus glycoprotein peptide under glycemic control can efficiently bypass the intact BBB, enabling brain-wide delivery of various biologics including CRISPR genome editors targeting different genes in both Ai14 reporter mice and wild-type mice. In particular, up to 28% neuron editing via systemic delivery of Cre mRNA in Ai14 mice, up to 6.1% amyloid precursor protein (App) gene editing (resulting in 19.1% reduction in the expression level of intact APP), and up to 3.9% tyrosine hydroxylase (Th) gene editing (resulting in 30.3% reduction in the expression level of TH) in wild-type mice are observed. This versatile SNC nanoplatform may offer a novel strategy for the treatment of CNS disorders including Alzheimer's, Parkinson's, and Huntington's disease.


Assuntos
Produtos Biológicos , Doenças do Sistema Nervoso Central , Nanocápsulas , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Terapia Genética/métodos , Glutationa/metabolismo
16.
Stem Cell Res Ther ; 14(1): 345, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049901

RESUMO

BACKGROUND: Genomic sequencing in congenital heart disease (CHD) patients often discovers novel genetic variants, which are classified as variants of uncertain significance (VUS). Functional analysis of each VUS is required in specialised laboratories, to determine whether the VUS is disease causative or not, leading to lengthy diagnostic delays. We investigated stem cell cardiac disease modelling and transcriptomics for the purpose of genetic variant classification using a GATA4 (p.Arg283Cys) VUS in a patient with CHD. METHODS: We performed high efficiency CRISPR gene editing with homology directed repair in induced pluripotent stem cells (iPSCs), followed by rapid clonal selection with amplicon sequencing. Genetic variant and healthy matched control cells were compared using cardiomyocyte disease modelling and transcriptomics. RESULTS: Genetic variant and healthy cardiomyocytes similarly expressed Troponin T (cTNNT), and GATA4. Transcriptomics analysis of cardiomyocyte differentiation identified changes consistent with the patient's clinical human phenotype ontology terms. Further, transcriptomics revealed changes in calcium signalling, and cardiomyocyte adrenergic signalling in the variant cells. Functional testing demonstrated, altered action potentials in GATA4 genetic variant cardiomyocytes were consistent with patient cardiac abnormalities. CONCLUSIONS: This work provides in vivo functional studies supportive of a damaging effect on the gene or gene product. Furthermore, we demonstrate the utility of iPSCs, CRISPR gene editing and cardiac disease modelling for genetic variant interpretation. The method can readily be applied to other genetic variants in GATA4 or other genes in cardiac disease, providing a centralised assessment pathway for patient genetic variant interpretation.


Assuntos
Edição de Genes , Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Miócitos Cardíacos/metabolismo , Sequência de Bases , Transdução de Sinais
17.
Genes (Basel) ; 14(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136940

RESUMO

The dendritic cell (DC) vaccine anti-cancer strategy involves tumour-associated antigen loading and maturation of autologous ex vivo cultured DCs, followed by infusion into the cancer patient. This strategy stemmed from the idea that to induce a robust anti-tumour immune response, it was necessary to bypass the fundamental immunosuppressive mechanisms of the tumour microenvironment that dampen down endogenous innate immune cell activation and enable tumours to evade immune attack. Even though the feasibility and safety of DC vaccines have long been confirmed, clinical response rates remain disappointing. Hence, the full potential of DC vaccines has yet to be reached. Whether this cellular-based vaccination approach will fully realise its position in the immunotherapy arsenal is yet to be determined. Attempts to increase DC vaccine immunogenicity will depend on increasing our understanding of DC biology and the signalling pathways involved in antigen uptake, maturation, migration, and T lymphocyte priming to identify amenable molecular targets to improve DC vaccine performance. This review evaluates various genetic engineering strategies that have been employed to optimise and boost the efficacy of DC vaccines.


Assuntos
Neoplasias , Vacinas , Humanos , Eficácia de Vacinas , Linfócitos T , Células Dendríticas , Microambiente Tumoral
18.
Biomolecules ; 13(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759719

RESUMO

Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and ß-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/genética
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(4): 516-526, 2023 Apr 20.
Artigo em Zh | MEDLINE | ID: mdl-37202186

RESUMO

OBJECTIVE: To establish a rapid detection and genotyping method for SARS-CoV-2 Omicron BA.4/5 variants using CRISPPR-Cas12a gene editing technology. METHODS: We combined reverse transcription-polymerase chain reaction (RT-PCR) and CRISPR gene editing technology and designed a specific CRISPPR RNA (crRNA) with suboptimal protospacer adjacent motifs (PAM) for rapid detection and genotyping of SARS- CoV-2 Omicron BA.4/5 variants. The performance of this RT- PCR/ CRISPPR-Cas12a assay was evaluated using 43 clinical samples of patients infected by wild-type SARS-CoV-2 and the Alpha, Beta, Delta, Omicron BA. 1 and BA. 4/5 variants and 20 SARS- CoV- 2-negative clinical samples infected with 11 respiratory pathogens. With Sanger sequencing method as the gold standard, the specificity, sensitivity, concordance (Kappa) and area under the ROC curve (AUC) of RT-PCR/CRISPPR-Cas12a assay were calculated. RESULTS: This assay was capable of rapid and specific detection of SARS- CoV-2 Omicron BA.4/5 variant within 30 min with the lowest detection limit of 10 copies/µL, and no cross-reaction was observed in SARS-CoV-2-negative clinical samples infected with 11 common respiratory pathogens. The two Omicron BA.4/5 specific crRNAs (crRNA-1 and crRNA-2) allowed the assay to accurately distinguish Omicron BA.4/5 from BA.1 sublineage and other major SARS-CoV-2 variants of concern. For detection of SARS-CoV-2 Omicron BA.4/5 variants, the sensitivity of the established assay using crRNA-1 and crRNA-2 was 97.83% and 100% with specificity of 100% and AUC of 0.998 and 1.000, respectively, and their concordance rate with Sanger sequencing method was 92.83% and 96.41%, respectively. CONCLUSION: By combining RT-PCR and CRISPPR-Cas12a gene editing technology, we successfully developed a new method for rapid detection and identification of SARS-CoV-2 Omicron BA.4/5 variants with a high sensitivity, specificity and reproducibility, which allows rapid detection and genotyping of SARS- CoV-2 variants and monitoring of the emerging variants and their dissemination.


Assuntos
COVID-19 , Humanos , Sistemas CRISPR-Cas , Genótipo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , RNA , Teste para COVID-19
20.
Mol Ther Nucleic Acids ; 32: 1010-1025, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346975

RESUMO

Post-translational glycosylation of the HIV-1 envelope protein involving precursor glycan trimming by mannosyl oligosaccharide glucosidase (MOGS) is critically important for morphogenesis of virions and viral entry. Strategic editing of the MOGS gene in T lymphocytes and myeloid origin cells harboring latent proviral DNA results in the production of non-infectious particles upon treatment of cells with latency reversal agents. Controlled activation of CRISPR-MOGS by rebound HIV-1 mitigates production of infectious particles that exhibit poor ability of the virus to penetrate uninfected cells. Moreover, exclusive activation of CRISPR in cells infected with HIV-1 alleviates concern for broad off-target impact of MOGS gene ablation in uninfected cells. Combination CRISPR treatment of peripheral blood lymphocytes prepared from blood of people with HIV-1 (PWH) tailored for editing the MOGS gene (CRISPR-MOGS) and proviral HIV-1 DNA (CRISPR-HIV) revealed a cooperative impact of CRISPR treatment in inhibiting the production of infectious HIV-1 particles. Our design for genetic inactivation of MOGS by CRISPR exhibits no detectable off-target effects on host cells or any deleterious impact on cell survival and proliferation. Our findings offer the development of a new combined gene editing-based cure strategy for the diminution of HIV-1 spread after cessation of antiretroviral therapy (ART) and its elimination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA