RESUMO
Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.
Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomegalia/induzido quimicamente , Fibrose , Insuficiência Cardíaca/induzido quimicamente , Isoproterenol/farmacologia , Remodelação VentricularRESUMO
Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.
Assuntos
Canais de Cálcio Tipo L , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Síndrome do QT Longo , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação , Estrutura Secundária de Proteína/genética , Ligação Proteica/genética , CristalografiaRESUMO
BACKGROUND: Cyclosporine A (CsA)-induced cardiac interstitial fibrosis and cardiac hypertrophy are highly known phenomena; however, the basic mechanisms of CsA cardiotoxicity are unclear. The present study evaluated the role of the Transforming growth factor-beta (TGF-ß)/Smad3/miR-29b signaling pathway and CaMKIIδ isoforms gene expression in cardiac remodeling under CsA exposure alone or combined with moderate exercise. METHODS: A total of 24 male Wistar rats were divided into control, cyclosporine (30 mg/kg BW), and cyclosporine-exercise groups. RESULTS: After 42 days of treatment, the findings revealed a significant decline in miR-29 and miR-30b-5p gene expression and an increase in gene expression of Smad3, calcium/calmodulin-dependent protein kinaseIIδ (CaMKIIδ) isoforms, Matrix Metalloproteinases (MMPs), protein expression of TGF-ß, heart tissue protein carbonyl and oxidized LDL (Ox-LDL), and plasma LDL and cholesterol levels in the CsA-treated group compared to the control group. The CsA group presented greater histological heart changes such as fibrosis, necrosis, hemorrhage, infiltrated leukocyte, and left ventricular weight/heart weight than the control group. Moreover, combined moderate exercise and CsA relatively improved gene expression changes and histological alternations compared to the CsA group. CONCLUSION: TGF-ß-Smad3-miR-29 and CaMKIIδ isoforms may mainly contribute to the progression of heart fibrosis and hypertrophy due to CsA exposure, providing new insight into the pathogenesis and treatment of CsA-induced side effects on the heart tissue.
Assuntos
Ciclosporina , MicroRNAs , Ratos , Animais , Masculino , Ciclosporina/farmacologia , Remodelação Ventricular , Ratos Wistar , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fibrose , MicroRNAs/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais , Expressão GênicaRESUMO
Necroptosis is a newly discovered mechanism of cell death, and its key regulatory role is attributed to the interaction of receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3. Ca2+/calmodulin-dependent protein kinase (CaMKII) is a newly discovered RIPK3 substrate, and its alternative splicing plays a fundamental role in cardiovascular diseases. In the present study, we aimed to explore the role and mechanism of necroptosis and alternative splicing of CaMKIIδ in myocardial hypertrophy. Transverse aortic constriction (TAC) was performed on wild-type and knockout mice to establish the model of myocardial hypertrophy. After 3 weeks, echocardiography, cardiac index, cross-sectional area of myocardial cells, hypertrophic gene expression, myocardial damage, and fibers were assessed. Moreover, we detected the levels of inflammatory factors (IL-6 and TNF-α) and examined the expressions of necroptosis-related proteins RIPK3, RIPK1, and phosphorylated MLKL. Meanwhile, we tested the expression levels of splicing factors ASF/SF2 and SC-35 in an attempt to explore CaMKII δ. The relationship between variable splicing disorder and the expression levels of splicing factors ASF/SF2 and SC-35. Further, we also investigated CaMKII activation, oxidative stress, and mitochondrial ultrastructure. In addition, wild-type mice were administered with a recombinant adeno-associated virus (AAV) carrying RIPK3, followed by TAC surgery to construct a model of myocardial hypertrophy, and the above-mentioned indicators were tested after 3 weeks. The results showed that RIPK3 deficiency could alleviate cardiac dysfunction, myocardial injury, aggravation of necrosis, and CaMKII activation induced by TAC surgery in mice with myocardial hypertrophy. Tail vein injection of AAV could reverse cardiac dysfunction, myocardial damage, aggravation of necrosis, and CaMKII activation in mice with myocardial hypertrophy. These results proved that RIPK3 could be used as a molecular intervention target for the prevention and treatment of myocardial hypertrophy.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomegalia , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Morte Celular , Necrose , Fatores de Processamento de RNARESUMO
Obesity increases the risk of arterial hypertension in young adults and favors an early-onset cardiomyopathy by generating oxidative stress. In this sense, indiscriminate consumption of sucrose and fructose sweetened beverages from early ages causes obesity, however its consequences on the heart when there is a genetic predisposition to develop hypertension are not clear. We compared the effects of sucrose, fructose, and their combination in weanling male spontaneously hypertensive rats to determine the relationship between genetic hypertension, obesity, and consumption of these sugars on the degree of cardiac hypertrophy, oxidative stress and Ca2+/calmodulin dependent protein kinase II delta oxidation. Histological, biochemical, and Western blot studies were performed 12 weeks after treatment initiation. We found that chronic consumption of sucrose or fructose leads to obesity, exacerbates genetic arterial hypertension-induced metabolic alterations, and increases cardiac oxidative stress, Ca2+/calmodulin dependent protein kinase II delta oxidation and cardiac hypertrophy. Nonetheless, when sucrose and fructose are consumed together, metabolic alterations worsen and are accompanied by dilated cardiomyopathy. These data suggest that sucrose and fructose combined consumption starting from maternal weaning in rats with genetic predisposition to arterial hypertension accelerates the progression of cardiomyopathy resulting in an early dilated cardiomyopathy.
RESUMO
Myocardial ischemia/reperfusion (I/R) injury poses a significant threat to human health. High level of reactive oxygen species (ROS) and calcium overload are the foremost causes of myocardial damage in I/R. Sulforaphane (SFN) is known for its promising antioxidant effect. Whether or not SFN has myocardial protective effect against I/R is largely unknown. This study aimed to investigate if SFN can protect myocardium from I/R injury. We found that mice or cells pre-treated with SFN showed improved cardiac functions and cell survival. SFN treatment inhibited the production of inflammatory cytokines and the increase of intracellular calcium induced by hypoxia-reperfusion (H/R), while mitochondria membrane potential was effectively maintained. Transcriptome analysis showed that CaMKIIδ expression was down-regulated by SFN treatment in I/R myocardium, while CaMKIIN2, the inhibitor of CaMKII, was upregulated. Knockdown of CaMKIIN2 not only led to increased level of total CaMKIIδ and the phosphorylated CaMKIIδ but also blocked the pro-survival effect of SFN for H/R cells. Moreover, CaMKIIN2 overexpression was sufficient to suppress CaMKIIδ activation and improve cell survival under H/R. Taken together, this study demonstrated that SFN exerts cardioprotective effect toward I/R injury through upregulating CaMKIIN2 and down-regulating CaMKIIδ.
Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isotiocianatos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , SulfóxidosRESUMO
It has been widely reported that dysregulated long-chain noncoding RNAs (lncRNAs) are closely associated with epilepsy. This study aimed to probe the function of lncRNA growth arrest-specific 5 (GAS5), microRNA (miR)-219 and Calmodulin-dependent protein kinase II (CaMKII)γ/N-methyl-D-aspartate receptor (NMDAR) pathway in epilepsy. Epileptic cell and animal models were constructed using magnesium deficiency treatment and diazepam injection, respectively. GAS5 and miR-219 expressions in epileptic cell and animal models were determined using qRT-PCR assay. The protein levels of CaMKIIγ, NMDAR and apoptosis-related proteins levels were assessed by western blot. Cell counting kit-8 (CCK-8) assay was employed to determine cell proliferation. Besides, TNFα, IL-1ß, IL-6 and IL-8 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Furthermore, cell apoptosis was evaluated using TUNEL staining and flow cytometric analysis. Finally, the binding relationship between GAS5 and EZH2 was verified using RIP and ChIP assay. Our results revealed that GAS5 was markedly upregulated in epileptic cell and animal models, while miR-219 was down-regulated. GAS5 knockdown dramatically increased cell proliferation of epileptic cells, whereas suppressed inflammation and the apoptosis. Furthermore, our results showed that GAS5 epigenetically suppressed transcriptional miR-219 expression via binding to EZH2. miR-219 mimics significantly enhanced cell proliferation of epileptic cells, while inhibited inflammation and the apoptosis, which was neutralized by CaMKIIγ overexpression. Finally, miR-219 inhibition reversed the effects of GAS5 silence on epileptic cells, which was eliminated by CaMKIIγ inhibition. In conclusion, GAS5 affected inflammatory response and cell apoptosis of epilepsy via inhibiting miR-219 and further regulating CaMKIIγ/NMDAR pathway (See graphic summary in Supplementary Material).
Assuntos
Epilepsia , MicroRNAs , RNA Longo não Codificante , Animais , Apoptose/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Repressão Epigenética , Epilepsia/genética , Inflamação/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
The prevalence of the metabolic syndrome (MetS) and its cardiac comorbidities as cardiac hypertrophy (CH) have increased considerably due to the high consumption of carbohydrates, such as sucrose and/or fructose. We compared the effects of sucrose (S), fructose (F) and their combination (S + F) on the development of MetS in weaned male Wistar rats and established the relationship between the consumption of these sugars and the degree of cardiac CH development, oxidative stress (OS) and Calcium/calmodulin-dependent protein kinase type II subunit delta oxidation (ox-CaMKIIδ). 12 weeks after the beginning of treatments with S, F or S + F, arterial pressure was measured and 8 weeks later (to complete 20 weeks) the animals were sacrificed and blood samples, visceral adipose tissue and hearts were obtained. Biochemical parameters were determined in serum and cardiac tissue to evaluate the development of MetS and OS. To evaluate CH, atrial natriuretic peptide (ANP), CaMKIIδ and ox-CaMKIIδ were determined by western blot and histological studies were performed in cardiac tissue. Our data showed that chronic consumption of S + F exacerbates MetS-induced CH which is related with a higher OS and ox-CaMKIIδ.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Carboidratos da Dieta/efeitos adversos , Frutose/efeitos adversos , Síndrome Metabólica/enzimologia , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Sacarose/efeitos adversos , Animais , Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Sacarose/farmacologiaRESUMO
Glioblastoma (GBM) is one of the most malignant brain tumors and requires the formation of new blood vessels, called angiogenesis, for its growth and metastasis. Several proangiogenic factors, including vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF), stimulate GBM angiogenesis. Accordingly, blocking the angiogenesis induced by angiogenic factors represents a promising modality for the treatment of GBM. In this study, we evaluated the inhibitory effects of berbamine, a plant-derived compound, on the angiogenesis induced by VEGF and BDNF in human umbilical vein endothelial cells (HUVECs). Berbamine effectively inhibited the angiogenic features stimulated by VEGF (such as proliferation, adhesion, invasion, tube formation, and reactive oxygen species (ROS) generation in HUVECs) as well as those by BDNF, at concentrations that do not affect endothelial cell viability. The antiangiogenic effects of berbamine were associated with the downregulation of VEGF/VEGF receptor 2 (VEGFR2)/Ca2+/calmodulin-dependent protein kinase IIγ (CaMKIIγ) and BDNF/tropomyosin receptor kinase B (TrkB)/CaMKIIγ signaling pathways. In addition, berbamine suppressed the expression of a key regulator of tumor angiogenesis, hypoxia-inducible factor-1α (HIF-1α), and its transcriptional target, VEGF, in U87MG GBM cells. Furthermore, berbamine significantly inhibited in vivo neovascularization as well as U87MG tumor growth in a chick embryo chorioallantoic membrane (CAM) model. All these findings suggest that berbamine may be utilized as a new antiangiogenic agent for the treatment of malignant brain tumors.
Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Benzilisoquinolinas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Animais , Neoplasias Encefálicas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Embrião de Galinha , Glioblastoma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inibidores de Proteínas Quinases/farmacologiaRESUMO
PURPOSE OF REVIEW: This review aims to give an update on recent findings related to the cardiac splicing factor RNA-binding motif protein 20 (RBM20) and RBM20 cardiomyopathy, a form of dilated cardiomyopathy caused by mutations in RBM20. RECENT FINDINGS: While most research on RBM20 splicing targets has focused on titin (TTN), multiple studies over the last years have shown that other splicing targets of RBM20 including Ca2+/calmodulin-dependent kinase IIδ (CAMK2D) might be critically involved in the development of RBM20 cardiomyopathy. In this regard, loss of RBM20 causes an abnormal intracellular calcium handling, which may relate to the arrhythmogenic presentation of RBM20 cardiomyopathy. In addition, RBM20 presents clinically in a highly gender-specific manner, with male patients suffering from an earlier disease onset and a more severe disease progression. Further research on RBM20, and treatment of RBM20 cardiomyopathy, will need to consider both the multitude and relative contribution of the different splicing targets and related pathways, as well as gender differences.
Assuntos
Cardiomiopatia Dilatada/genética , DNA/genética , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Análise Mutacional de DNA , Humanos , Miócitos Cardíacos/patologia , Proteínas de Ligação a RNA/metabolismoRESUMO
Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation. In this study, we evaluated DNA cytosine methylation/demethylation as a mechanism for regulating CaMKII isoform expression in VSM. Inhibition of cytosine methylation with 5-Aza-2'-deoxycytidine significantly upregulated CaMKIIγ expression in cultured VSM cells and inhibited CaMKIIγ downregulation in organ-cultured aorta ex vivo. With the use of methylated cytosine immunoprecipitation, the rat Camk2g promoter was found hypomethylated in differentiated VSM, whereas injury- or cell culture-induced VSM dedifferentiation coincided with Camk2g promoter methylation and decreased expression. We report for the first time that VSM cell phenotype switching is accompanied by marked induction of thymine DNA glycosylase (TDG) protein and mRNA expression in injured arteries in vivo and in cultured VSM synthetic phenotype cells. Silencing Tdg in VSM promoted expression of CaMKIIγ and differentiation markers, including myocardin, and inhibited VSM cell proliferation and injury-induced neointima formation. This study indicates that CaMKIIγ expression in VSM is regulated by cytosine methylation/demethylation and that TDG is an important determinant of this process and, more broadly, VSM phenotype switching and function.NEW & NOTEWORTHY Expression of the calcium calmodulin-dependent protein kinase II-γ isoform (CaMKIIγ) is associated with differentiated vascular smooth muscle (VSM) and negatively regulates proliferation in VSM synthetic phenotype (VSMSyn) cells. This study demonstrates that thymine DNA glycosylase (TDG) plays a key role in regulating CaMKIIγ expression in VSM through promoter cytosine methylation/demethylation. TDG expression is strongly induced in VSMSyn cells and plays key roles in negatively regulating CaMKIIγ expression and more broadly VSM phenotype switching.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lesões das Artérias Carótidas/enzimologia , Plasticidade Celular , Metilação de DNA , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Timina DNA Glicosilase/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Transdução de Sinais , Timina DNA Glicosilase/genéticaRESUMO
Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Substituição de Aminoácidos , Calmodulina/genética , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/genética , Humanos , Mutação de Sentido Incorreto , Fosforilação/genética , Serina/genética , Serina/metabolismoRESUMO
BACKGROUND: TMEM16A is a critical component of Ca2+-activated chloride channels (CaCCs) and mediates basilar arterial smooth muscle cell (BASMC) proliferation in hypertensive cerebrovascular remodeling. CaMKII is a negative regulator of CaCC, and four CaMKII isoforms (α, ß, γ and δ) are expressed in vasculature; however, it is unknown which and how CaMKII isoforms affect TMEM16A-associated CaCC and BASMC proliferation.MethodsâandâResults:Patch clamp and small interfering RNA (siRNA) knockdown of different CaMKII isoforms revealed that only CaMKIIγ inhibited native Ca2+-activated chloride currents (ICl.Ca) in BASMCs. The TMEM16A overexpression evoked TMEM16A Cl-current and inhibited angiotensin II (Ang II)-induced proliferation in BASMCs. The co-immunoprecipitation and pull-down assay indicated an interaction between CaMKIIγ and TMEM16A protein. TMEM16A Cl-current was modulated by CaMKIIγ phosphorylation at serine residues in TMEM16A. Serine525 and Serine727 in TMEM16A were mutated to alanine, and only mutation at Ser727 (S727A) reversed the CaMKIIγ inhibition of the TMEM16A Cl-current. Phosphomimetic mutation S727D markedly decreased TMEM16A Cl-current and reversed TMEM16A-mediated suppression of BASMC proliferation, mimicking the inhibitory effects of CaMKIIγ on TMEM16A. A significant increase in CaMKIIγ isoform content was observed in parallel to the decrease of TMEM16A and ICl.Cain basilar artery proliferative remodeling in Ang II-infused mice. CONCLUSIONS: Serine 727 phosphorylation in TMEM16A by CaMKIIγ provides a new mechanism for regulating TMEM16A CaCC activity and Ang II-induced BASMC proliferation.
Assuntos
Anoctamina-1/metabolismo , Canais de Cloreto/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Angiotensina II/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células/efeitos dos fármacos , Hipertensão , Camundongos , Fosforilação , Isoformas de Proteínas , RNA Interferente PequenoRESUMO
BACKGROUND: Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. RESULTS: MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. CONCLUSIONS: These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Tolerância a Medicamentos/fisiologia , Gânglios Espinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Proteína de Ligação a CREB/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/fisiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Dor/induzido quimicamente , Dor/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
CaMKIIδ, a calcium/calmodulin-dependent protein kinase, plays pivotal roles in the development of heart disease. In this issue of The Journal of Pathology, Salma Awad and colleagues demonstrate that CaMKIIδ is engaged in both pathological hypertrophy and heart failure. By analysis of mouse and human heart samples, they found that the level of CaMKIIδ is increased in both pathological processes. Further studies demonstrated that CaMKIIδ mediates the phosphorylation of histone H3 at serine 10 (H3S10), which then tethers the chaperone protein 14-3-3 to promoter regions of fetal cardiac genes to activate their transcription. Combined with recent highlights on transcription regulation, this study revealed a fuzzy boundary between pathological hypertrophy and subsequent heart failure and indicates that current therapeutic strategies towards heart failure may have potential risks to patients.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Insuficiência Cardíaca/enzimologia , Hemodinâmica , Histonas/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Humanos , MasculinoRESUMO
Heart failure is associated with the reactivation of a fetal cardiac gene programme that has become a hallmark of cardiac hypertrophy and maladaptive ventricular remodelling, yet the mechanisms that regulate this transcriptional reprogramming are not fully understood. Using mice with genetic ablation of calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ), which are resistant to pathological cardiac stress, we show that CaMKIIδ regulates the phosphorylation of histone H3 at serine-10 during pressure overload hypertrophy. H3 S10 phosphorylation is strongly increased in the adult mouse heart in the early phase of cardiac hypertrophy and remains detectable during cardiac decompensation. This response correlates with up-regulation of CaMKIIδ and increased expression of transcriptional drivers of pathological cardiac hypertrophy and of fetal cardiac genes. Similar changes are detected in patients with end-stage heart failure, where CaMKIIδ specifically interacts with phospho-H3. Robust H3 phosphorylation is detected in both adult ventricular myocytes and in non-cardiac cells in the stressed myocardium, and these signals are abolished in CaMKIIδ-deficient mice after pressure overload. Mechanistically, fetal cardiac genes are activated by increased recruitment of CaMKIIδ and enhanced H3 phosphorylation at hypertrophic promoter regions, both in mice and in human failing hearts, and this response is blunted in CaMKIIδ-deficient mice under stress. We also document that the chaperone protein 14-3-3 binds phosphorylated H3 in response to stress, allowing proper elongation of fetal cardiac genes by RNA polymerase II (RNAPII), as well as elongation of transcription factors regulating cardiac hypertrophy. These processes are impaired in CaMKIIδ-KO mice after pathological stress. The findings reveal a novel in vivo function of CaMKIIδ in regulating H3 phosphorylation and suggest a novel epigenetic mechanism by which CaMKIIδ controls cardiac hypertrophy.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Insuficiência Cardíaca/enzimologia , Hemodinâmica , Histonas/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos Knockout , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Polimerase II/metabolismo , Ratos , Transcrição Gênica , TransfecçãoRESUMO
CONTEXT: The critical role of CaMKIIδ isoforms in cardiac hypertrophy is well documented. OBJECTIVE: This study was aimed to investigate the possible inhibitory effects of aliskiren (ALS) and/or carvedilol (CAV) on CaMKIIδ isoforms expression in experimental cardiac hypertrophy. MATERIALS AND METHODS: Male Wistar albino rats were subcutaneously injected with isoproterenol (ISO) (5 mg/kg/day) for 4 weeks to induce cardiac hypertrophy. Hypertrophied rats were daily treated with either ALS (10 mg/kg) and/or CAV (10 mg/kg). At the end of the treatment, rats were killed; blood and hearts were collected for assessing different biochemical parameters. RESULTS: ISO treatment significantly increased heart weight to body weight (HW/BW) ratio, serum creatine kinase MB (CK-MB) and troponin T (Tn-T) levels, and plasma renin activity (PRA) as compared to control rats. Additionally, ISO treatment produced a significant increase in the expression of myocardial CaMKIIδ2 and CaMKIIδ3 that were associated with significant elevation in myocardial caspase-3 protein expression. Histopathological examination of rats exposed to ISO treatment showed severe myocardial cell degeneration. ALS and/or CAV treatment significantly reduced the altered HW/BW ratio, serum CK-MB and Tn-T levels, PRA, and caspase-3 protein expression in hypertrophied rats, with maximal improvement in the combination group. These biochemical findings were supported by the histopathological examination of the heart tissue. Additionally, treatment with ALS and CAV significantly inhibited ISO-induced increase in CaMKIIδ2 and CaMKIIδ3 expression levels. DISCUSSION AND CONCLUSION: The present study indicated that ALS and CAV treatment ameliorated ISO-induced hypertrophy via inhibiting the expression and the activity of CaMKIIδ isoforms and the associated myocardial apoptosis.
Assuntos
Amidas/uso terapêutico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Carbazóis/uso terapêutico , Cardiomegalia/tratamento farmacológico , Fumaratos/uso terapêutico , Propanolaminas/uso terapêutico , Sistema Renina-Angiotensina/efeitos dos fármacos , Amidas/administração & dosagem , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Carbazóis/administração & dosagem , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Carvedilol , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Quimioterapia Combinada , Fumaratos/administração & dosagem , Coração/efeitos dos fármacos , Isoproterenol/toxicidade , Masculino , Miocárdio/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Propanolaminas/administração & dosagem , Isoformas de Proteínas , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Renina/sangue , Troponina T/sangueRESUMO
Emerging evidence has shown that miRNA-mediated gene expression modulation contributes to chronic pain, but its functional regulatory mechanism remains unknown. Here, we found that complete Freund's adjuvant (CFA)-induced chronic inflammation pain significantly reduced miRNA-219 (miR-219) expression in mice spinal neurons. Furthermore, the expression of spinal CaMKIIγ, an experimentally validated target of miR-219, was increased in CFA mice. Overexpression of spinal miR-219 prevented and reversed thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization induced by CFA. Concurrently, increased expression of spinal CaMKIIγ was reversed by miR-219 overexpression. Downregulation of spinal miR-219 in naive mice induced pain-responsive behaviors and increased p-NMDAR1 expression, which could be inhibited by knockdown of CaMKIIγ. Bisulfite sequencing showed that CFA induced the hypermethylation of CpG islands in the miR-219 promoter. Treatment with demethylation agent 5'-aza-2'-deoxycytidine markedly attenuated pain behavior and spinal neuronal sensitization, which was accompanied with the increase of spinal miR-219 and decrease of CaMKIIγ expression. Together, we conclude that methylation-mediated epigenetic modification of spinal miR-219 expression regulates chronic inflammatory pain by targeting CaMKIIγ.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dor Crônica , Epigênese Genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Medula Espinal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dor Crônica/etiologia , Dor Crônica/metabolismo , Dor Crônica/patologia , Ilhas de CpG/genética , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Medição da Dor , RNA Interferente Pequeno/farmacologia , Medula Espinal/patologia , Transdução GenéticaRESUMO
Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca(2+)/CaM binds eEF-2K with high affinity (Kd(CaM)(app) = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 10(4)-fold (k(auto) = 2.6 ± 0.3 s(-1)). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca(2+)/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing k(cat)(app) for peptide substrate phosphorylation by 10(3)-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (k(cat)(app)/K(m)(Pep-S) (app)), with equal contributions from k(cat)(app) and K(m)(Pep-S)(app), suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.
Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Ativação Enzimática , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Biossíntese de Proteínas , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Treonina/metabolismoRESUMO
BACKGROUND: Alternative splicing factor (ASF)-regulated alternative splicing of calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) plays an important role in pathologic cardiac remodeling. ASF can be phosphorylated by dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). This study aimed to investigate the possible involvement of the Dyrk1A-ASF-CaMKIIδ signaling pathway in the progression of myocardial infarction (MI)-induced heart failure (HF). METHODS AND RESULTS: MI in rats was induced by means of left anterior descending coronary artery ligation. Seven weeks after MI, the increase in left ventricular internal diameter at end-diastole (LVIDd), and the decrease in both ejection fraction (EF) and fractional shortening (FS) indicated that MI rats had developed HF. Quantitative real time reverse-transcription polymerase chain reaction indicated the dysregulation of CaMKIIδ alternative splicing, ie, up-regulation of CaMKIIδA and CaMKIIδC and down-regulation of CaMKIIδB in the hearts of HF rats. Electrophoresis and immunostaining revealed that HF activated the phosphorylation of ASF and affected its subcellular localization. Western blot analysis demonstrated a significant elevation in the activity and expression of Dyrk1A in HF rats. Inversely, treatment of MI-induced HF rats with Dyrk1A inhibitor, either harmine or EGCG, improved the symptoms of HF, reversed the molecular changes of Dyrk1A and ASF, and regulated alternative splicing of CaMKIIδ in HF rats. CONCLUSIONS: Enhanced activation of Dyrk1A-ASF-CaMKIIδ signaling pathway may underlie the mechanisms of HF after MI, and Dyrk1A inhibition may contribute to inactivation of this pathway and thereby retard the progression of MI-induced HF.