Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118460, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387493

RESUMO

Water erosion poses a significant environmental threat in the Mediterranean region, with pronounced impacts observed throughout Morocco. It impairs soil quality and disrupts both sediment transport and water availability. Contributing factors range from natural (climate, topography, and geology) to anthropogenic (land use, vegetation cover, and management). This study introduces an improved Priority Actions Program/Regional Activity Centre (PAP/RAC) model, enriched with GIS and the Caesium-137 (137Cs) technique, to investigate erosion within Morocco's Raouz basin. Enhanced with additional variables including soil types, slope length, rainfall erosion potential, slope orientation, soil moisture, and land surface temperature, the model transcends the classical approach, promoting granularity and precision in predictions. In addition to the comprehensive model, the 137Cs method, which discerns long-term soil erosion and redistribution, provides a dual-faceted validation, bolstering the robustness of this project's erosion risk evaluation. This study's outcomes underscore the gravity of the erosion hazard with significant soil depletion rates ranging from 8.1 to 20 t ha-1 yr-1, demonstrating the model's alignment with empirical data, affirming its utility. The modified PAP/RAC model concurs with the 137Cs data, demonstrating its usefulness for water erosion assessment and management in similar areas.


Assuntos
Radioisótopos de Césio , Sistemas de Informação Geográfica , Marrocos , Radioisótopos de Césio/análise , Erosão do Solo , Monitoramento Ambiental/métodos , Modelos Teóricos
2.
Luminescence ; 39(3): e4706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483095

RESUMO

Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3 ) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.


Assuntos
Antimônio , Brometos , Compostos de Cálcio , Óxidos , Pontos Quânticos , Titânio , Césio
3.
Sensors (Basel) ; 23(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37112348

RESUMO

Machine learning (ML) is an effective tool to interrogate complex systems to find optimal parameters more efficiently than through manual methods. This efficiency is particularly important for systems with complex dynamics between multiple parameters and a subsequent high number of parameter configurations, where an exhaustive optimisation search would be impractical. Here we present a number of automated machine learning strategies utilised for optimisation of a single-beam caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The sensitivity of the OPM (T/Hz), is optimised through direct measurement of the noise floor, and indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective control of the OPM's operational parameters. Ultimately, this machine learning approach increased the optimal sensitivity from 500 fT/Hz to <109fT/Hz. The flexibility and efficiency of the ML approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell geometry, alkali species and sensor topologies.

4.
J Environ Manage ; 345: 118900, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696187

RESUMO

Aggregated transfer factors (Tag) were identified for three common vegetables grown in six common European soils freshly contaminated by 134Cs and 85Sr. The experiment was carried out as a mesocosm experiment in pots with an average soil weight of 15.8 kg per pot. The vegetables were grown one after the other during one vegetation season, in the order lettuce, onion, and radish (the order usually applied in private gardens and small farms). Despite the fact that lettuce was grown in the most contaminated soil, it had the lowest Tag (in m2/kg) of both radionuclides (3.6E-4 for Cs, 2.0E-2 for Sr), while onion had 6.4E-3 for Cs and 3.2E-2 for Sr and radish had 1.9E-3 for Cs and 8.1E-2 for Sr. Potassium supply did not show any statistically significant effect on Cs Tag; there was a significant impact of K on the decrease in Sr Tag. The experiments indicated that Tag is more affected by plant species than by soil type; therefore, selection of plants with a lower capacity to uptake radionuclides may be an important measure to reduce food contamination and thus minimize the committed effective dose.


Assuntos
Poluição Ambiental , Verduras , Lactuca , Contaminação de Alimentos , Solo
5.
J Radiol Prot ; 43(3)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37339608

RESUMO

A monitoring programme, in place since 2006, continues to recover radioactive particles (<2 mm diameter) and larger objects from the beaches of West Cumbria. The potential risks to members of the public using the beaches are mainly related to prolonged skin contact with or the inadvertent ingestion of small particles. Most particles are classified as either 'beta-rich' or 'alpha-rich' and are detected as a result of their caesium-137 or americium-241 content. Beta-rich particles generally also contain strontium-90, with90Sr:137Cs ratios of up to about 1:1, but typically <0.1:1. Alpha-rich particles contain plutonium isotopes, with Pu:241Amαratios usually around 0.5-0.6:1. 'Beta-rich' particles have the greatest potential to cause localised skin damage if held in stationary contact with the skin for prolonged periods. However, it is concluded that only particles of >106Bq of137Cs, with high90Sr:137Cs ratios, would pose a significant risk of causing acute skin ulceration. No particles of this level of activity have been found. Inadvertent ingestion of a particle will result in the absorption to blood of a small proportion of the radionuclide content of the particle. The subsequent retention of radionuclides in body organs and tissues presents a potential risk of the development of cancer. For 'beta-rich' particles with typical activities (mean 2 × 104Bq137Cs, Sr:Cs ratio of 0.1:1), the estimated committed effective doses are about 30µSv for adults and about 40µSv for 1 year old infants, with lower values for 'alpha-rich' particles of typical activities. The corresponding estimates of lifetime cancer incidence following ingestion for both particle types are of the order of 10-6for adults and up to 10-5for infants. These estimates are subject to substantial uncertainties but provide an indication of the low risks to members of the public.


Assuntos
Praias , Exposição Ambiental , Resíduos Radioativos , Poluentes Radioativos do Solo , Humanos , Lactente , Radioisótopos de Césio/efeitos adversos , Radioisótopos de Césio/análise , Plutônio/efeitos adversos , Plutônio/análise , Poluentes Radioativos do Solo/efeitos adversos , Poluentes Radioativos do Solo/análise , Reino Unido , Resíduos Radioativos/efeitos adversos , Resíduos Radioativos/análise , Adulto , Medição de Risco , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Pele/efeitos da radiação , Ingestão de Alimentos , Neoplasias/induzido quimicamente , Partículas beta/efeitos adversos , Partículas alfa/efeitos adversos
6.
Environ Monit Assess ; 195(6): 703, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212912

RESUMO

The habitation and environment are affected by the stable isotopes of caesium (Cs) and strontium (Sr), as well as by their radioactive isotopes. The current work gives insight on Alstonia scholaris' capacity to phytoextract stable caesium (Cs) and strontium (Sr), as well as the plant's ability to protect against the toxicity of both elements. Experiments with Cs [0-5 mM (CsCl)] and Sr [0-3 mM (SrCl2. 6H2O)] dosing in controlled light, temperature, and humidity condition in greenhouse for 21 days were undertaken. Cs and Sr accumulation in different plant parts was quantified with atomic absorption spectroscopy (AAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) respectively. Hyper-accumulation capacity for Cs and Sr was estimated with indices like transfer factor (TF) and translocation factors (TrF). The uptake pattern of caesium in Alstonia scholaris is 5452.8-24,771.4 mg/kg DW (TF = 85.2-57.6) and in the case of Sr is 1307.4-8705.7 mg/kg DW (TF = 85.3-1.46). The findings demonstrated the plant's ability to transfer Cs and Sr to aboveground biomass on the basis of dry weight, with the majority of the metals being deposited in the shoot rather than the root portion of the plant. For Cs and Sr, with increasing concentration, the plants exhibited the enzymatic expression for defence against metal toxicity by free radicals compared to control. Field emission electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) was employed to assess the spatial distribution of Cs and Sr in plant leaf, indicating the accumulation of Cs, Sr, and their homologous components.


Assuntos
Alstonia , Estrôncio , Estrôncio/toxicidade , Alstonia/metabolismo , Hidroponia , Monitoramento Ambiental , Césio/metabolismo , Radioisótopos de Estrôncio
7.
Angew Chem Int Ed Engl ; 62(27): e202304966, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37132607

RESUMO

Catalytic reduction of a representative set of imines, both aldimines and ketimines, to amines has been studied using transfer hydrogenation from 1,4-dicyclohexadiene. Unusually, this has been achieved using s-block pre-catalysts, namely 1-metallo-2-tert-butyl-1,2-dihydropyridines, 2-tBuC5 H5 NM, M(tBuDHP), where M=Li-Cs. Reactions have been monitored in C6 D6 and tetrahydrofuran-d8 (THF-d8 ). A definite trend is observed in catalyst efficiency with the heavier alkali metal tBuDHPs outperforming the lighter congeners. In general, Cs(tBuDHP) is the optimal pre-catalyst with, in the best cases, reactions producing quantitative yields of amines in minutes at room temperature using 5 mol % catalyst. Supporting the experimental study, Density Functional Theory (DFT) calculations have also been carried out which reveal that Cs has a pathway with a significantly lower rate determining step than the Li congener. In the postulated initiation pathways DHP can act as either a base or as a surrogate hydride.

8.
Angew Chem Int Ed Engl ; 62(22): e202302852, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971018

RESUMO

Although α-CsPbI3 is regarded as an attractive optical luminophore, it is readily degraded to the optically inactive δ-phase under ambient conditions. Here, we present a simple approach to revive degraded ("optically sick") α-CsPbI3 through "medication" with thiol-containing ligands. The effect of different types of thiols is systematically studied through optical spectroscopy. The structural reconstruction of degraded α-CsPbI3 nanocrystals to cubic crystals in the presence of thiol-containing ligands is visualized through high-resolution transmission electron microscopy and supported by X-ray diffraction analysis. We found that 1-dodecanethiol (DSH) effectively revives degraded CsPbI3 and results in high immunity towards moisture and oxygen, hitherto unreported. DSH facilitates the passivation of surface defects and etching of degraded Cs4 PbI6 phase, thus reverting them back to the cubic CsPbI3 phase, leading to enhanced PL and environmental stability.

9.
Molecules ; 26(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641316

RESUMO

Waste eggshells were considered for synthesising a precursor (CaO) for a heterogeneous catalyst, further impregnated by alkali caesium oxide (Cs2O). The following techniques were used to characterise the synthesised catalysts: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (CO2-TPD). The synthesised catalyst revealed its suitability for transesterification to produce biodiesel. The biodiesel production process was optimised, and it showed that the optimal biodiesel yield is 93.59%. The optimal set of process parameters is process temperature 80 °C, process time 90 min, methanol-to-oil molar ratio 8 and catalyst loading 3 wt.%. It has been found that the high basicity of the catalyst tends to give a high biodiesel yield at low methanol-to-oil ratio 8 when the reaction time is also less (90 min). The fuel properties of biodiesel also satisfied the standard limits defined by ASTM and the EN standards. Thus, the synthesised catalyst from waste eggshells is highly active, improved the biodiesel production conditions and PPSS oil is a potential nonedible source.


Assuntos
Biocombustíveis , Ésteres/química , Millettia/química , Catálise , Césio/química , Fontes Geradoras de Energia , Óxidos/química , Sementes/química
10.
Plant Cell Environ ; 43(7): 1707-1721, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275780

RESUMO

Root K+ acquisition is a key process for plant growth and development, extensively studied in the model plant Arabidopsis thaliana. Because important differences may exist among species, translational research supported by specific studies is needed in crops such as tomato. Here we present a reverse genetics study to demonstrate the role of the SlHAK5 K+ transporter in tomato K+ nutrition, Cs+ accumulation and its fertility. slhak5 KO lines, generated by CRISPR-Cas edition, were characterized in growth experiments, Rb+ and Cs+ uptake tests and root cells K+ -induced plasma membrane depolarizations. Pollen viability and its K+ accumulation capacity were estimated by using the K+ -sensitive dye Ion Potassium Green 4. SlHAK5 is the major system for high-affinity root K+ uptake required for plant growth at low K+ , even in the presence of salinity. It also constitutes a pathway for Cs+ entry in tomato plants with a strong impact on fruit Cs+ accumulation. SlHAK5 also contributes to pollen K+ uptake and viability and its absence produces almost seedless fruits. Knowledge gained into SlHAK5 can serve as a model for other crops with fleshy fruits and it can help to generate tools to develop low Cs+ or seedless fruits crops.


Assuntos
Césio/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Canais de Potássio/fisiologia , Potássio/metabolismo , Solanum lycopersicum/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Edição de Genes , Solanum lycopersicum/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/crescimento & desenvolvimento , Canais de Potássio/metabolismo , Reprodução , Sementes/crescimento & desenvolvimento
11.
J Appl Microbiol ; 128(1): 65-73, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31562676

RESUMO

AIMS: To compare antigen extraction efficiency of chemical methods such as benzyl alcohol, chloroform, sodium citrate, extraction buffer with Tween-20 (EBT) and isopropyl myristate for determination of 146S content in the fresh and stored FMD oil-adjuvanted vaccines. METHODS AND RESULTS: Standard vaccine with antigen payload of 10, 5 and 5 µg per cattle dose (2 ml) for serotypes O, A and Asia1, respectively, was used to compare the antigen extraction efficiency of five chemical methods: benzyl alcohol, chloroform, sodium citrate, EBT buffer and isopropyl myristate. The purity of the extracted 146S antigen was quantified by caesium chloride (CsCl) ultracentrifugation. Serotype-specific sandwich ELISA (sELISA) was developed to identify the serotype and to compare the 146S in aqueous phase and ultrafractions. The antigen recovery was also tested in stored trivalent vaccine. Coefficient of regression was calculated to assess the predictive power of the benzyl alcohol extraction method. Of the five methods, benzyl alcohol showed consistent antigen recovery of >90% in monovalent as well as trivalent vaccines. Ultrafraction showed a 1·4 ratio at A259/239 nm in UV spectrophotometry indicating the presence of 146S. sELISA revealed that the antigen recovery was significantly less in ultrafractions than that of aqueous phase. Further, there was no significant difference in antigen recovery from stored trivalent vaccine for 12 months, indicating the usefulness of the benzyl alcohol method. Linear regression model revealed R2  = 0·99 with a narrow band of predictive interval. CONCLUSIONS: The benzyl alcohol method was efficient in extracting 146S from the monovalent and trivalent fresh and stored FMD vaccines. CsCl density gradient precisely quantified the 146S, while sELISA identified the serotype of the vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY: When the benzyl alcohol method is coupled with CsCl density gradient and sELISA, it has the potential to determine the 146S content of FMD vaccine.


Assuntos
Antígenos Virais/isolamento & purificação , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Antígenos Virais/imunologia , Bovinos , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa/genética , Sorogrupo , Potência de Vacina , Vacinas Virais/análise
12.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168860

RESUMO

We have investigated caesium hydrogen sulfate, CsHSO4, in all three of its ambient pressure phases by total scattering neutron diffraction, inelastic neutron scattering (INS) and Raman spectroscopies and periodic density functional theory calculations. Above 140 °C, CsHSO4, undergoes a phase transition to a superprotonic conductor that has potential application in intermediate temperature fuel cells. Total scattering neutron diffraction data clearly show that all the existing structures of this phase are unable to describe the local structure, because they have either partial occupancies of the atoms and/or non-physical O-H distances. Knowledge of the local structure is crucial because it is this that determines the conduction mechanism. Starting from one of the previous models, we have generated a new structure that has no partial occupancies and reasonable O-H distances. After geometry optimisation, the calculated radial distribution function is in reasonable agreement with the experimental data, as are the calculated and observed INS and Raman spectra. This work is particularly notable in that we have measured INS spectra in the O-H stretch region above room temperature, which is extremely rare. The INS spectra have the enormous advantage that the electrical anharmonicity that complicates the infrared spectra is absent and the stretch modes are plainly seen.


Assuntos
Césio/química , Condutividade Elétrica , Hidrogênio/química , Prótons , Sulfatos/química , Teoria da Densidade Funcional , Transição de Fase , Análise Espectral Raman , Temperatura
13.
Environ Res ; 175: 468-488, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158565

RESUMO

The basin of the Don River (the fifth longest river in Europe), located mainly in the forest-steppe and steppe landscape zones, is one of the most populated and agriculturally developed regions of the East European (Russian) Plain. Sheet, rill and gully erosion occurring chiefly in snowmelt period (March-April) and also in moderate-to-heavy-rainfalls season (chiefly May-to-September) is the main factor of present-day soil degradation within cultivated lands of this basin. Using monitoring hydrological data, it is shown, by the examples of the Khopyor River and the Medveditsa River flowing in the northeastern part of the Don River basin (SW European Russia), that suspended sediment yield of the rivers, as an objective and sufficiently accurate indicator of total erosion intensity in river basins, was reduced by 3.6-3.8 times between the 1960s-1970s and 2008-2015. This conclusion is consistent with change in sedimentation rates (using 137Cs as a chronomarker) within one of the small catchments located in the basin of the upper reaches of the Medveditsa River. The noted dynamics in erosion intensity and suspended sediment yields took place against the background of a well-marked tendency (since the 1940s-1960s) of reduction in intra-annual unevenness of river water flow caused by a decrease in spring (snowmelt-induced, March-April) flood water flow, and by a more significant increase in water discharges during low-water-flow periods of year (winter (December-to-February) and river-ice-free period (mid-April-to-November)). These changes were accompanied by an increase in duration of spring (snowmelt-induced) flood flow with a reduction in its intensity, year-to-year anomalousness and contribution to total annual water flow of the rivers. The main reasons for all the changes noted over the last decades were climate change (a decrease in depth of soil freezing during snowmelt period caused by an increase in air temperature mainly in winter and spring months; an increase in winter thaws frequency) and human activity changes (mainly a reduction in cultivated land area, especially in the 1990s and early 2000s). The similar tendencies were identified over the last decades in other regions of the forest (south part), forest-steppe and steppe landscape zones of the East European Plain.


Assuntos
Mudança Climática , Monitoramento Ambiental , Rios , Europa (Continente) , Sedimentos Geológicos , Humanos , Hidrologia , Federação Russa , Solo , Movimentos da Água
14.
Ecotoxicol Environ Saf ; 171: 558-563, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30641317

RESUMO

This paper analyzes the effect of caesium (Cs) concentration on seed germination, seedling growth, root uptake, and leaf uptake of Lactuca sativa to understand the potential transfer of the metal from contaminated soil to humans through the food chain. The results of germination experiments show that seed germination and seedling growth strongly depend on increasing Cs concentration, with a decrease in the number of germinated seeds compared to the control up to 13.6% and a reduction in seedling growth up to 10.3% at the highest Cs tested concentration (15 mM). Uptake experiments indicate a low transfer of Cs from soil to leaves and roots of the plants, ranging between 0.06% and 2.2%. The transfer is found to be a not-monotone function of soil potassium (K) content, with highest values corresponding to 1-2 mM K2SO4. Increasing concentrations of K lead to lower translocation of Cs from roots to leaves. Values above the average amount applied (20 and 40 mM K2SO4) almost stop the translocation, suggesting the use of a high amount of K2SO4 protects the food chain from Cs contamination.


Assuntos
Césio/análise , Cadeia Alimentar , Poluentes do Solo/análise , Verduras/química , Transporte Biológico , Germinação/efeitos dos fármacos , Folhas de Planta/química , Potássio/análise , Plântula/efeitos dos fármacos , Solo/química
15.
Beilstein J Org Chem ; 15: 1856-1863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467607

RESUMO

As a synthesis technique, halide metathesis (n RM + M'X n → R n M' + n MX) normally relies for its effectiveness on the favorable formation of a metal halide byproduct (MX), often aided by solubility equilibria in solution. Owing to the lack of significant thermodynamic driving forces, intra-alkali metal exchange is one of the most challenging metathetical exchanges to attempt, especially when conducted without solvent. Nevertheless, grinding together the bulky potassium allyl [KA']∞ (A' = [1,3-(SiMe3)2C3H3]-) and CsI produces the heterometallic complex [CsKA'2]∞ in low yield, which was crystallographically characterized as a coordination polymer that displays site disorder of the K+ and Cs+ ions. The entropic benefits of mixed Cs/K metal centers, but more importantly, the generation of multiple intermolecular K…CH3 and Cs…CH3 interactions in [CsKA'2]∞, enable an otherwise unfavorable halide metathesis to proceed with mechanochemical assistance. From this result, we demonstrate that ball milling and unexpected solid-state effects can permit seemingly unfavored reactions to occur.

16.
Chemistry ; 24(47): 12183-12205, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29770979

RESUMO

Perovskite solar cells have the potential to revolutionize the world of photovoltaics, and their efficiency close to 23 % on a lab-scale recently certified this novel technology as the one with the most rapidly raising performance per year in the whole story of solar cells. With the aim of improving stability, reproducibility and spectral properties of the devices, in the last three years the scientific community strongly focused on Cs-doping for hybrid (typically, organolead) perovskites. In parallel, to further contrast hygroscopicity and reach thermal stability, research has also been carried out to achieve the development of all-inorganic perovskites based on caesium, the performances of which are rapidly increasing. The potential of caesium is further strengthened when it is used as a modifying agent of charge-carrier layers in solar cells, but also for the preparation of perovskites with peculiar optoelectronic properties for unconventional applications (e.g., in LEDs, photodetectors, sensors, etc.). This Review offers a 360-degree overview on how caesium can strongly tune the properties and performance of perovskites and relative perovskite-based devices.

17.
Environ Res ; 167: 21-33, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30005197

RESUMO

The eastern part of the Russian Plain is an important agricultural region of European Russia with high proportion of cultivated lands in the steppe, forest-steppe and forest (southern part) landscape zones. Soil erosion is the main process of land degradation and surface water contamination there. Climate and land cover changes have been observed in this region during the last 30 years. However, field quantitative assessments of soil erosion rates are not available for the eastern part of European Russia due to the lack of monitoring data as well as the evaluation of erosion/deposition processes in cultivated catchments using other field methods. Three representative small cultivated catchments with high (> 80%) proportion of cultivated lands were selected in the forest (southern part), forest-steppe and steppe zones of the study region to evaluate sedimentation rates in dry valley bottoms of the catchments for two-time intervals (1963-1986 and 1987-2016) based on the application of the bomb-derived and Chernobyl-derived 137Cs isotope for sediment dating. The 3-4 depth 137Cs profiles were used to assess the sedimentation rates within the each investigated catchment. It was established that the sedimentation rates have considerably decreased (at least 2-3 times) over the last 30 years compared to 1963-1986 in all the investigated catchments. This is in agreement with results of erosion rate calculations using erosion models for the forest zone, however not consistent with erosion rates assessments for the forest-steppe and steppe zones. According to the model calculations, erosion rates show a slight decrease in the forest-steppe zone and increase in the steppe zone. The reduction in surface runoff during snowmelt period is one of the reasons for decrease in erosion rates within cultivated slopes for all the investigated catchments. The increase in proportion of perennial grasses in the regional crop rotation is another important reason for the decrease in erosion rates for the catchment located in the south of the forest zone. The importance of land cover changes in a major decrease of soil losses from the cultivated fields of the investigated catchments located in the forest-steppe and steppe zones cannot be identified due to the lack detailed information about crop rotation for those particular sites. However, available regional information about crop rotation changes for the two-time intervals (1960-1980 and 1996-2012) do not explain very high reduction in sedimentation rates in the dry valley bottoms after 1986.


Assuntos
Sedimentos Geológicos , Solo , Agricultura , Clima , Federação Russa
18.
Ecotoxicol Environ Saf ; 165: 582-588, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236920

RESUMO

The effect of potassium (K) concentration gradient on stable caesium (Cs) uptake by Calla palustris was studied under hydroponic conditions after eight-day exposure in a greenhouse experiment. The plants were exposed to two different concentrations of Cs (provided as 0.5 and 1 mM CsCl) and five different concentrations of K (provided as K2SO4 in 0.5, 1, 2, 5, and 10 mM). The results indicate negative dependence of Cs uptake on K concentrations for both Cs treatments. The application of K reduced the transfer of stable Cs from water to plant by about 44-72% for 0.5 mM CsCl and 56-74% for 1 mM CsCl. The highest efficiency of Cs removal from water was observed for plants in K+ deficient solutions (plants starving), with an efficiency 8.0% for plants cultivated in 0.5 mM CsCl and 9.4% for plants in 1 mM CsCl. An increasing concentration of K also supported translocation of Cs from roots to leaves. Higher translocation was observed for the treatments with lower level of Cs, where the concentration of Cs in leaves became higher than that in roots. The Cs uptake and translocations were affected not only by the external concentration of K, but also the external concentration of stable Cs. A high concentration of K in the environment protects the food chain from Cs uptake by plants, but lowers the efficiency of phytoremediation techniques.


Assuntos
Calla (Planta)/metabolismo , Radioisótopos de Césio/metabolismo , Césio/metabolismo , Cloretos/metabolismo , Potássio/metabolismo , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Césio/análise , Radioisótopos de Césio/análise , Cloretos/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Potássio/farmacologia , Poluentes Radioativos do Solo
19.
Rev Environ Contam Toxicol ; 241: 139-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27300012

RESUMO

Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.


Assuntos
Plantas/metabolismo , Poluentes Radioativos/farmacocinética , Biodegradação Ambiental , Disponibilidade Biológica , Transporte Biológico , Poluentes Radioativos do Solo/farmacocinética
20.
J Environ Manage ; 197: 619-630, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432887

RESUMO

This paper examines the application of cement (C)-barite (Ba) based-Stabilisation/Solidification (S/S) for the remediation of 137Cs-contaminated soils, investigating the influence of soil: grout and C: Ba ratios on the shielding performance of the S/S mix assessed as gamma radiation shielding (γRS) index variation. Results from experiments were used to perform a novel approach and an economic analysis in order to calculate the effective dose reduction achievable by S/S and to assess the optimum quantities and costs of selected mixes, respectively. Gamma ray spectrometer measurements indicate that γRS index increases with increasing barite percentage up to a maximum level of 50%; however a further increase results in a worsening of the shielding performances. A maximum γRS variation of 46.5% was recorded with grout percentage increasing from 16.6 to 50%. At the photon energy of 662 keV (137Cs), the maximum grout amount results in the possibility to shield up to 24.1% of γ-rays emitted. The effective dose reduction achievable by the investigated S/S allows a maximum 137Cs-soil contamination in the range 2.94-14.55 kBq kg-1 successfully treatable employing a soil: grout ratio of 1: 1 (C: Ba = 1:1). Technical data, jointly with economic analysis findings, make cement-barite based-S/S very competitive in cost-effectiveness and could provide a basis for decision-making of 137Cs-contaminated site remediation.


Assuntos
Radioisótopos de Césio , Recuperação e Remediação Ambiental , Raios gama , Poluentes Radioativos do Solo , Sulfato de Bário , Poluição Ambiental , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA