Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662087

RESUMO

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Assuntos
Agonistas dos Canais de Cálcio/química , Ativação do Canal Iônico , Contração Muscular , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sítios de Ligação , Cafeína/química , Cálcio/química , Microscopia Crioeletrônica , Ligantes , Domínios Proteicos , Coelhos , Proteínas de Ligação a Tacrolimo/química
2.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011635

RESUMO

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Assuntos
Cardiomegalia , Disferlina , Camundongos Knockout , Miócitos Cardíacos , Retículo Sarcoplasmático , Animais , Disferlina/metabolismo , Disferlina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Humanos , Camundongos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Camundongos Endogâmicos C57BL , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proliferação de Células , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina
3.
Mol Cell ; 70(2): 228-241.e5, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677491

RESUMO

The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca2+ channels and suggest a therapeutic strategy for treating mite-induced asthma.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Sinalização do Cálcio , Movimento Celular , Mastócitos/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pyroglyphidae/enzimologia , Receptores de Trombina/metabolismo , Serina Endopeptidases/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Antígenos de Dermatophagoides/efeitos adversos , Antígenos de Dermatophagoides/genética , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/efeitos adversos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Asma/imunologia , Asma/metabolismo , Células HEK293 , Humanos , Exposição por Inalação , Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Células Jurkat , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Pyroglyphidae/genética , Pyroglyphidae/imunologia , Receptor PAR-2 , Receptores Acoplados a Proteínas G/metabolismo , Serina Endopeptidases/efeitos adversos , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
4.
Circulation ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253856

RESUMO

BACKGROUND: The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of IRS2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS: A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS: The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²+ transient amplitudes, increased spontaneous Ca²+ sparks, and reduced sarcoplasmic reticulum Ca²+ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca2+/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS: Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.

5.
Circ Res ; 132(2): e59-e77, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583384

RESUMO

BACKGROUND: PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS: We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS: We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Serina , Camundongos , Animais , Humanos , Isoproterenol/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Serina/metabolismo , Serina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isoquinolinas/farmacologia , Sulfonamidas/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(10): e2120416119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238659

RESUMO

SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Hipertrófica/genética , Ativação do Canal Iônico , Mutação , Isoformas de Proteínas/metabolismo , Canais de Cálcio Tipo L/química , Cristalografia por Raios X , Humanos , Conformação Proteica , Isoformas de Proteínas/química
7.
J Physiol ; 602(8): 1509-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866974

RESUMO

Increasing evidence suggests that simply reducing ß-amyloid (Aß) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aß-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.

8.
J Biol Chem ; 299(8): 104970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380078

RESUMO

Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.


Assuntos
Retículo Endoplasmático , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Temperatura , Humanos
9.
Circulation ; 148(21): 1691-1704, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37850394

RESUMO

BACKGROUND: Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. ß-Adrenergic receptor antagonists (ß-blockers) are the first-line therapy for HCM. However, ß-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS: We screened 21 ß-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS: We identified that carvedilol, a ß-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a ß1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of ß-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS: R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.


Assuntos
Cardiomiopatia Hipertrófica , Metoprolol , Humanos , Camundongos , Animais , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Metoprolol/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Miócitos Cardíacos/metabolismo , Verapamil/uso terapêutico , Receptores Adrenérgicos/metabolismo
10.
Int Heart J ; 65(3): 580-585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825499

RESUMO

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Assuntos
Síndrome do QT Longo , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Masculino , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/diagnóstico , Eletrocardiografia , Linhagem , Adulto , Teste de Esforço , Mutação
11.
J Physiol ; 601(1): 99-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408764

RESUMO

In mammalian skeletal muscle, the propagation of surface membrane depolarization into the interior of the muscle fibre along the transverse (T) tubular network is essential for the synchronized release of calcium from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) in response to the conformational change in the voltage-sensor dihydropyridine receptors. Deficiency in 3-phosphoinositide phosphatase myotubularin (MTM1) has been reported to disrupt T-tubules, resulting in impaired SR calcium release. Here confocal calcium transients recorded in muscle fibres of MTM1-deficient mice were compared with the results from a model where propagation of the depolarization along the T-tubules was modelled mathematically with disruptions in the network assumed to modify the access and transmembrane resistance as well as the capacitance. If, in simulations, T-tubules were assumed to be partially or completely inaccessible to the depolarization and RyRs at these points to be prime for calcium-induced calcium release, all the features of measured SR calcium release could be reproduced. We conclude that the inappropriate propagation of the depolarization into the fibre interior is the initial critical cause of severely impaired SR calcium release in MTM1 deficiency, while the Ca2+ -triggered opening of RyRs provides an alleviating support to the diseased process. KEY POINTS: Myotubular myopathy is a fatal disease due to genetic deficiency in the phosphoinositide phosphatase MTM1. Although the causes are known and corresponding gene therapy strategies are being developed, there is no mechanistic understanding of the disease-associated muscle function failure. Resolving this issue is of primary interest not only for a fundamental understanding of how MTM1 is critical for healthy muscle function, but also for establishing the related cellular mechanisms most primarily or stringently affected by the disease, which are thus of potential interest as therapy targets. The mathematical modelling approach used in the present work proves that the disease-associated alteration of the plasma membrane invagination network is sufficient to explain the dysfunctions of excitation-contraction coupling, providing the first integrated quantitative framework that explains the associated contraction failure.


Assuntos
Cálcio , Músculo Esquelético , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio da Dieta , Mamíferos/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
J Biol Chem ; 298(6): 101990, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490782

RESUMO

Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)-induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.


Assuntos
Proteína ORAI1 , Podócitos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Calpaína/genética , Calpaína/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Podócitos/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
13.
Am J Physiol Endocrinol Metab ; 324(6): E477-E487, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074988

RESUMO

The standard model for Ca2+ oscillations in insulin-secreting pancreatic ß cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the ß cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Cálcio/metabolismo , Insulina/metabolismo , Sinalização do Cálcio , Secreção de Insulina
14.
J Recept Signal Transduct Res ; 43(1): 1-8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651469

RESUMO

THE PURPOSE OF THE ARTICLE: To identify novel small molecule antagonists of Urotensin II receptor with acceptable pharmacological profile. MATERIALS AND METHODS: Structure-activity-relationship (SAR) studies on 2-{N-[(2,4,5-trichlorophenoxy) acetyl]-N-methylamino}-3-pyrrolidinepropanamide series were conducted and shortlisted compounds were synthesized and evaluated in in vitro cell-based assays. Human and mouse Urotensin II receptor overexpressing CHO cells were used for calcium release and radioligand binding assays. Initial molecules in this series had solubility and inter-species variability issue in the calcium release assay. We, therefore, conducted SAR to overcome these 2 issues and molecules with accepted in vitro profile were evaluated further in mouse pressor response model to generate the in vivo proof of concept for UII receptor antagonization. RESULTS AND CONCLUSIONS: We report herewith identification of 2-{N-[(2,4,5-trichlorophenoxy)acetyl]-N-methylamino}-3-pyrrolidinepropanamides series to obtain novel small molecule antagonists of Urotensin II receptor with acceptable pharmacological profile.


Assuntos
Cálcio , Urotensinas , Camundongos , Cricetinae , Animais , Humanos , Cricetulus , Cálcio/metabolismo , Urotensinas/química , Urotensinas/metabolismo , Urotensinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células CHO
16.
Europace ; 25(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37466361

RESUMO

AIMS: The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS: We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon ß-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION: In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Arritmias Cardíacas , Morte Súbita Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Mutação
17.
Europace ; 25(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37387319

RESUMO

The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Coração , Acoplamento Excitação-Contração , Mutação
18.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628726

RESUMO

Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Canal de Liberação de Cálcio do Receptor de Rianodina , Sítios de Ligação , Sistemas de Liberação de Medicamentos
19.
BMC Oral Health ; 23(1): 1034, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129851

RESUMO

BACKGROUND: The placement of liners near the pulp area is essential for therapeutic effects and maintaining pulp health while stimulating the formation of tertiary dentin. This in vitro study aimed to evaluate the calcium release, pH, biocompatibility, solubility, and bioactivity of three resin-modified calcium hydroxide cavity liners. METHODS: The disc specimens of each cavity liner were prepared using polyethylene molds of 7 mm in diameter and 2 mm in height (n = 10). Three light-cure liners evaluated include Ultra-Blend Plus (UB), Base-it (BI), and Master Dent (MD). The samples were then immersed in flasks containing 10 mL of distilled water. Calcium ion release, pH, and solubility were evaluated in two weeks of incubation. The cytotoxicity of extracts adjacent to the specimens was evaluated by MTT assay using NIH/3T3 cells after 1, 3, and 7 days of incubation. The ability to induce the nucleation of calcium phosphates (CaPs) after 28-day immersion in a simulated body fluid was investigated by SEM-EDX analysis. Statistical analysis was performed using ANOVA, Kruskal-Wallis, and repeated measures tests at the significant level of 0.05. RESULTS: There was a significant difference in the release of calcium ions among the three liners investigated on days 1, 7, and 14 (p < 0.05). UB liners exhibited a significantly higher amount of calcium release than the other two liners, followed by BI, and MD. On day 1, there was no significant difference in the average pH among the three liners. However, after day 7, the MD liner showed a significant decrease in pH compared to the other two liners. BI liner demonstrated the highest level of biocompatibility, followed by the MD and UB liners. UB showed a high calcium release, solubility with no alkalizing activity, and the formation of more mature Ca-rich apatite deposits than the other two liners. CONCLUSION: Based on the results of this study, the cavity liner material's performance is material dependent. It can impact ion release, biocompatibility, and bioactivity which are important factors to consider in clinical practice. Further studies are needed to investigate the long-term effects of different liner materials on oral tissues.


Assuntos
Hidróxido de Cálcio , Cálcio , Humanos , Animais , Camundongos , Hidróxido de Cálcio/farmacologia , Cálcio/análise , Forramento da Cavidade Dentária , Fosfatos de Cálcio , Apatitas , Teste de Materiais
20.
J Mol Cell Cardiol ; 173: 1-15, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084744

RESUMO

The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.


Assuntos
Estenose da Valva Aórtica , Transplante de Coração , Implante de Prótese de Valva Cardíaca , Humanos , Implante de Prótese de Valva Cardíaca/métodos , Volume Sistólico , Microscopia , Proteômica , Canal de Liberação de Cálcio do Receptor de Rianodina , Doadores de Tecidos , Valva Aórtica , Função Ventricular Esquerda/fisiologia , Biópsia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA