Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Genomics ; 12(1): 32, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945683

RESUMO

Naturally occurring stress-induced transcriptional readthrough is a recently discovered phenomenon, in which stress conditions lead to dramatic induction of long transcripts as a result of transcription termination failure. In 2015, we reported the induction of such downstream of gene (DoG) containing transcripts upon osmotic stress in human cells, while others observed similar transcripts in virus-infected and cancer cells. Using the rigorous methodology Cap-Seq, we demonstrated that DoGs result from transcriptional readthrough, not de novo initiation. More recently, we presented a genome-wide comparison of NIH3T3 mouse cells subjected to osmotic, heat, and oxidative stress and concluded that massive induction of transcriptional readthrough is a hallmark of the mammalian stress response. In their recent letter, Huang and Liu in contrast claim that DoG transcripts result from novel transcription initiation near the ends of genes. Their conclusions rest on analyses of a publicly available transcription start site (TSS-Seq) dataset from unstressed NIH3T3 cells. Here, we present evidence that this dataset identifies not only true transcription start sites, TSSs, but also 5'-ends of numerous snoRNAs, which are generally processed from introns in mammalian cells. We show that failure to recognize these erroneous assignments in the TSS-Seq dataset, as well as ignoring published Cap-Seq data on TSS mapping during osmotic stress, have led to misinterpretation by Huang and Liu. We conclude that, contrary to the claims made by Huang and Liu, TSS-Seq reads near gene ends cannot explain the existence of DoGs, nor their stress-mediated induction. Rather it is, as we originally demonstrated, transcriptional readthrough that leads to the formation of DoGs.


Assuntos
RNA Nucleolar Pequeno/genética , Estresse Fisiológico/genética , Sítio de Iniciação de Transcrição , Transcriptoma/genética , Animais , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas
2.
BMC Genomics ; 18(1): 483, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651633

RESUMO

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Paramecium/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA