Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401253, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713154

RESUMO

Hydrogen peroxide (H2O2) has emerged as a kind of multi-functional green oxidants with extensive industrial utility. Oxidized carbon materials exhibit promises as electrocatalysts in the two-electron (2e-) oxygen reduction reaction (ORR) for H2O2 production. However, the precise identification and fabrication of active sites that selectively yield H2O2 present a serious challenge. Herein, a structural engineering strategy is employed to synthesize oxygen-doped carbon quantum dots (o-CQD) for the 2e- ORR. The surface electronic structure of the o-CQDs is systematically modulated by varying isomerization precursors, thereby demonstrating excellent electrocatalyst performance. Notably, o-CQD-3 emerges as the most promising candidate, showcasing a remarkable H2O2 selectivity of 96.2% (n = 2.07) at 0.68 V versus RHE, coupled with a low Tafel diagram of 66.95 mV dec-1. In the flow cell configuration, o-CQD-3 achieves a H2O2 productivity of 338.7 mmol gcatalyst -1 h-1, maintaining consistent production stability over an impressive 120-hour duration. Utilizing in situ technology and density functional theory calculations, it is unveil that edge sites of o-CQD-3 are facilely functionalized by C-O-C groups under alkaline ORR conditions. This isomerization engineering approach advances the forefront of sustainable catalysis and provides a profound insight into the carbon-based catalyst design for environmental-friendly chemical synthesis processes.

2.
Small ; : e2401505, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678539

RESUMO

The achievement of both efficiency and stability in perovskite solar cells (PSCs) remains a challenging and actively researched topic. In particular, among different environmental factors, ultraviolet (UV) photons play a pivotal role in contributing to device degradation. In this work, by harvesting simultaneously both the optical and the structural properties of bottom-up-synthesized colloidal carbon quantum dots (CQDs), a cost-effective means is provided to circumvent the UV-induced degradation in PSCs without scarification on their power conversion efficiencies (PCEs). By exploring and optimizing the number of CQDs and the different locations/interfaces of the solar cells where CQDs are applied, a synergetic configuration is achieved where the photovoltaic performance drop due to optical loss is completely compensated by the increased perovskite crystallinity due to interfacial modification. As a result, on the optimized configurations where CQDs are applied both on the exterior front side as an optical layer and at the interface between the electron transport layer and the perovskite absorber, unencapsulated PSCs with PCEs >20% are fabricated which can maintain up to ≈94% of their initial PCE after 100 h of degradation in ambient air under continuous UV illumination (5 mW cm-2).

3.
Small ; : e2405101, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051511

RESUMO

Carbon quantum dots (CQDs) have attracted more attentions due to their multiple performances. However, the fabrication of long-wavelength emitting CQDs with aliphatic precursors still remains a challenge, mainly because it is difficult to generate large sp2 domains to reduce energy gap, which is not conducive to a redshift of the luminescence peak. Hereon, by regulating the pH of citric acid and thiourea mixture, a N, S co-doped CQD emitting bright red fluorescence at 635 nm is successfully fabricated through the solvothermal reaction under acidic condition, achieving a high quantum yield of 32.66%. Solvatochromic effects of the CQDs are discussed through theoretical equations and models, which confirm that the hydrogen-bonding interaction dominates the fluorescence emission behavior of CQDs in polar solvents. Besides, a feasible strategy is proposed to prepare an anti-counterfeiting textile via the deposition of red-emitting CQDs onto cotton fibers, through rapidly evaporating the preferred organic solvent. As expected, the CQD-decorated textiles exhibit encouraging anti-counterfeiting and security-warning functions, along with underwater and long-distance detectability, washability, and sun resistance. It is worth noting that the present work is innovative in realizing the application of red-light-emitting CQDs in the fields of security-warning textiles.

4.
Anal Biochem ; 694: 115614, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38996899

RESUMO

Nasal ions environment plays a crucial role in maintaining nasal physiology and supports olfactory transmission. Addressing the limited research on nasal ion levels and their association with olfactory function, paper-based sensors were developed for determination of sodium, potassium, calcium and chloride in the nasal mucus of healthy volunteers and patients with olfactory dysfunction. Multi-walled carbon nanotubes and carbon quantum dots from beetroot were incorporated into paper substrate where sensors were designed with ion association complexes for sodium, potassium, calcium and chloride enhancing the recognition sensing capabilities. The sensors composition was optimized, including ion-exchange materials and plasticizers, to enhance sensitivity and selectivity. The performance of the sensors is evaluated based on Nernstian slope, dynamic range, detection limit and response time. Selectivity of the sensors was tested and the results demonstrated high selectivity for the target ions. The sensors were successfully determined sodium, potassium, calcium and chloride levels in nasal mucus of healthy volunteers and patients with olfactory dysfunction. The results revealed elevated calcium levels in patients with olfactory dysfunction, highlighting associated diagnostic implications. This suggests that the proposed sensors could serve as a diagnostic tool for olfactory evaluation, particularly in resource-constrained settings where access to advanced diagnostic tools is limited.


Assuntos
Cálcio , Papel , Humanos , Cálcio/análise , Cálcio/metabolismo , Transtornos do Olfato/diagnóstico , Nanotubos de Carbono/química , Sódio/análise , Sódio/metabolismo , Potássio/análise , Íons/análise , Pontos Quânticos/química , Olfato , Cloretos/análise , Mucosa Nasal/metabolismo , Masculino , Adulto
5.
Chem Rec ; 24(6): e202400030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837295

RESUMO

Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.


Assuntos
Biomassa , Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Corantes Fluorescentes/química
6.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38387092

RESUMO

Modification and functionalization of porous aromatic framework (PAF) materials have emerged as crucial research directions in various fields. In this study, we employed a hydrothermal method to synthesize a carbon quantum dots (CQDs) solution. By loading different amounts of CQDs onto the surface of PAF-45 material through ultrasonic and hydrothermal treatments, we successfully formed CQDs/PAF-45 composite materials. The introduction of CQDs effectively transformed the hydrophobic nature of PAF-45 into a hydrophilic material, thereby overcoming the challenge of achieving efficient contact between PAF catalysts and reactants in aqueous solutions. In the photocatalytic degradation experiments of Rhodamine B (RhB), tetracycline, CQDs/PAF-45 composite materials surpassed that of the pristine PAF-45 material. Notably, the 1 wt% CQDs/PAF-45 composite material exhibited the highest photocatalytic activity, with degradation efficiencies for Rhodamine B, tetracycline, and phenol approximately 1.4 times, 1.5 times and 1.5 times higher than those of the PAF-45 material, respectively.

7.
J Fluoresc ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427224

RESUMO

Mercury ions (Hg2+) can cause damage to human health, and thus, the study of the detection of Hg2+ is extraordinarily important in daily life. This work reported a fluorescence biosensor for the detection of Hg2+. The key point of this strategy was that the fluorescence of carbon quantum dots made from pomegranate peel (P-CQDs) was quenched by hemin, and restored after G-quadruplex binding with hemin. The presence of Hg2+ caused thymine (T)-rich DNA fragments to form T-Hg2+-T mismatches, and this change allowed the release of G-quadruplex. G-quadruplex could change the fluorescence of hemin/P-CQDs. P-CQDs exhibited excellent properties through characterization analysis, such as transmission electron microscope, X-ray photoelectron spectroscopy and Fourier transform infrared. This proposed fluorescence detection strategy established the linear ranges of Hg2+ from 1 nM to 50 nM. In conclusion, this simple biosensor had the advantages of strong sensitivity, high selectivity, and low cost for Hg2+ detection in environmental water samples.

8.
J Fluoresc ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695976

RESUMO

Carbon quantum dots (CQDs) were greenly synthesized via a single-step hydrothermal method, using the trunks of Bauhinia purpurea as the carbon source. They exhibited good dispersibility, water solubility, high sensitivity, and great stability with a spherical form and a particle size of 2.68 ± 0.32 nm. By utilizing the inner filter effect and dynamic quenching effect, the fluorescence quenching of CQDs can be induced to detect quinoline yellow. Detailed experimental results showed that the change rate of fluorescence intensity of CQDs had a good linear relationship with varying concentrations of quinoline yellow (2-128 µmol/L). It can be clearly observed that the fluorescence quenching occurred within 1 min, its correlation coefficient (R2) is 0.9912, and the detection limit (DL) is 1.7884 µmol/L, substantially lower than the maximum concentration stipulated by the national standard of 209.5 µmol/L. Furthermore, quinoline yellow had been successfully detected in real beverage samples using CQDs, with the recovery rates of 90.6%-110.4% and the relative standard deviation (RSD) ≤ 6.3% and it also showed great anti-interference and selectivity. These findings indicate that the detected quinoline yellow of CQDs possess substantial promise for a wide range of applications within the detected artificial food colors field.

9.
J Fluoresc ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789858

RESUMO

A green, economical and simple method for the preparation of water-soluble, high-fluorescent carbon quantum dots (CQDs) has been developed via hydrothermal process using pomelo peels as carbon source. The synthesized CQDs were characterized by transmission electron microscopy (TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), UV - vis absorption spectra and fluorescence spectrophotometer. The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 2.64 nm and emit bright blue photoluminescence (PL) with a quantum yield of approximately 3.63%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including excellent photostability, low toxicity, and satisfactory solubility. Additionally, we found that two widely used synthetic food colorants, tartrazine and sunset yellow, could result in a strong fluorescence quenching of the C-dots, The possible mechanisms are caused by different ratios of inner filter and static quenching effects. According to this property, This study attempts to establish an analytical method for the determination of tartrazine and sunset yellow using carbon quantum dots as fluorescent probe. A linear relationship was found in the range of 0-100 µM tartrazine and sunset yellow with the detection limit(3σ/k) of 0.65 nM and 1.7 nM. The relative standard deviation (RSD) was 3.5% (tartrazine) and 3.0% (sunset yellow).This observation was further successfully applied for the determination of tartrazine and sunset yellow in food samples collected from local markets, and the recovery rates of the two ranges from 79% to 117.8 and 81 -103.5%, respectively. suggesting its great potential toward food routine analysis.

10.
J Fluoresc ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421599

RESUMO

Intracellular copper ion (Cu2+) is irreplaceable and essential in regulation of physiological and biological processes, while excessive copper from bioaccumulation may cause potential hazards to human health. Hence, effective and sensitive recognition is urgently significant to prevent over-intake of copper. In this work, a novel highly sensitive and green carbon quantum dots (Green-CQDs) were synthesized by a low-cost and facile one-step microwave auxiliary method, which utilized gallic acid, carbamide and PEG400 as carbon source, nitrogen source and surface passivation agent, respectively. The decreased fluorescence illustrated excellent linear relationship with the increasing of Cu2+ concentration in a wide range. Substantial surface amino and hydroxyl group introduced by PEG400 significantly improved selectivity and sensitivity of Green-CQDs. The surface amino chelation mechanism and fluorescence internal filtration effect were demonstrated by the restored fluorescence after addition of EDTA. Crucially, the nanosensor illustrated good cell permeability, high biocompatibility and recovery rate, significantly practical application in fluorescent imaging and biosensing of intracellular Cu2+ in HepG-2 cells, which revealed a potential and promising biological applications in early diagnosis and treatment of copper ion related disease.

11.
J Fluoresc ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430416

RESUMO

Here, straightforward and environmentally friendly fluorescent nitrogen doped carbon quantum dots (N-CQDs) with a high blue fluorescence emission at 455 nm are used for ultrasensitive Hg2+ ion detection. Folic acid and urea are used as carbon sources in the carbonization process. Two broad absorption bands at around 280 and 370 nm from UV-Vis spectrum and characteristic absorption peaks from infrared spectrum confirms the successful synthesis of the N-CQDs. Energy dispersive X-Ray analysis confirmed the elemental composition of the N-CQDs. Transmission electron microscopy showed the homogeneous globular morphology of the N-CQDs with an average particle size of 65 nm. Zeta potential measurement established the stability and surface charge of N-CQDs. Dynamic light scattering measurement showed the average size of N-CQDs. With the addition of Hg2+ ion to N-CQDs, the blue fluorescence emission is quenched. Moreover, the N-CQDs can be applied to real water sample such as pond water, river water, and tap water. The detection limit is approximately calculated to be 12 nM and linear range is 0-30 parts per billion.

12.
J Fluoresc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767724

RESUMO

The current study report that the production of carbon quantum dots from Wrightia coccinea (WC) leaves using an eco-friendly, one-pot process. The structural, morphological, and optical characteristics of the CDs made from W. coccinea leaves by hydrothermal treatment at 200 °C for six hours were assessed using a variety of spectroscopic and electron microscopy techniques. The average size of CD was found to be approximately 5 nm using transmission electron microscopy (TEM) and the quantum yield of the produced CD was 15.6%. The synthesized CDs demonstrated extraordinary sensing capacity with a detection limit of 0.511 µM for ferric ion detection. The impact of varying pH levels on the fluorescence behavior of CD was thoroughly investigated. The maximum fluorescence intensity was examined at pH 3. Therefore, to detect Fe3+ ions as best as possible, the pH of the entire solution was adjusted to a value of 3. Furthermore, the pH-dependent fluorescence feature of CDs can be exploited by pH-sensitive fluorescence sensors. In the future, this might provide an added advantage for pH-based fluorescence sensor applications.

13.
J Fluoresc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814526

RESUMO

Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.

14.
J Fluoresc ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136912

RESUMO

Carbon quantum dots are a new type of fluorescent carbon-based nanomaterials, and their excellent properties have provoked a strong research interest. Herein, blue-fluorescent carbon quantum dots (k-CQDs) were successfully synthesized by a simple one-step hydrothermal method using chitosan and ethylenediaminetetraacetic acid as precursors. It was found that Fe3+ could quench the fluorescence of k-CQDs by a dynamic quenching mechanism that increased the positive charge in solution. Due to ascorbic acid (AA) can reduce Fe3+ to Fe2+, the positive charge in solution was reduced and the fluorescence of k-CQDs was restored. Based on the mechanism of the fluorescence "on-off-on", k-CQDs were used for the detection of Fe3+ and AA with strong antijamming capability. The LOD for Fe3+ concentrations in the ranges of 0 to 30 µM and 30 to 100 µM were 0.3 µM and 0.76 µM, respectively. The LOD for AA concentrations in the ranges of 0 to 82.5 µM and 82.5 to 172.5 µM were 3.93 µM and 1.63 µM, respectively. Spiking recoveries of Fe3+ in tap water, AA in orange juice and tomato juice were 87.93 ∼ 101.13%, 86.77 ∼ 105.15% and 86.43 ∼ 103.80%, respectively. Meanwhile, k-CQDs also showed good potential for anti-counterfeiting encryption.

15.
J Fluoresc ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126608

RESUMO

This study employed a green microwave synthesis technique to produce carbon quantum dots (CQDs) from araucaria heterophylla gum extract. The produced CQDs emit a distinct blue fluorescent light, contributing a remarkable quantum yield of 14.69%. Their average particle size measures at 1.62 ± 0.39 nm. Furthermore, these CQDs demonstrate excellent water solubility and maintain high fluorescence stability despite ionic strength, pH and time variations. Moreover, we present here for the first time that the synthesized CQDs demonstrate a rapid, exceptionally sensitive, and discerning fluorescence quenching phenomenon (IFE) concerning Cefprozil (CPR). The fluorescent probe was sensitive and specific with good linear relationships for CPR in the 0-18 µM range. The limit of detection for relationships for CPR was 2.51 µM. This study provides novel opportunities for producing high-quality luminescent CQDs that meet the requirements for various biological and environmental applications.

16.
J Nanobiotechnology ; 22(1): 125, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520022

RESUMO

After intracerebral hemorrhage (ICH) occurs, the overproduction of reactive oxygen species (ROS) and iron ion overload are the leading causes of secondary damage. Removing excess iron ions and ROS in the meningeal system can effectively alleviate the secondary damage after ICH. This study synthesized ginsenoside Rb1 carbon quantum dots (RBCQDs) using ginsenoside Rb1 and ethylenediamine via a hydrothermal method. RBCQDs exhibit potent capabilities in scavenging ABTS + free radicals and iron ions in solution. After intrathecal injection, the distribution of RBCQDs is predominantly localized in the subarachnoid space. RBCQDs can eliminate ROS and chelate iron ions within the meningeal system. Treatment with RBCQDs significantly improves blood flow in the meningeal system, effectively protecting dying neurons, improving neurological function, and providing a new therapeutic approach for the clinical treatment of ICH.


Assuntos
Ginsenosídeos , Pontos Quânticos , Camundongos , Animais , Espécies Reativas de Oxigênio , Hemorragia Cerebral/tratamento farmacológico , Ferro , Íons
17.
Luminescence ; 39(8): e4858, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129443

RESUMO

The research outlined a novel approach for creating a sensitive and efficient ratio fluorescent probe for ciprofloxacin (CIP) detection. The method used the biomass materials passionfruit shell and diethylenetriamine as carbon and nitrogen sources, respectively, to prepare blue fluorescent carbon quantum dots (b-CQDs) with an average size of 3.29 nm and a quantum yield of 19.6% by a hydrothermal method. The newly designed b-CQDs/riboflavin ratio fluorescent probe demonstrates a distinct advantage for CIP monitoring, exhibiting a marked increase in fluorescence intensity at 445 nm upon interaction with CIP, while maintaining a stable intensity at 510 nm. In the water system, the I445 nm/I510 nm ratio of the fluorescent probe showed a significant linear relationship with CIP at the concentrations of 0-250 µmol·L-1, and the probe boasts a low detection limit of 0.86 µmol·L-1. The outstanding selectivity, broad detection range, low detection limits, and high quantum yield of the b-CQDs highlight their significant potential in the development of advanced sensing probes for efficient detection of ciprofloxacin, offering promising insights for future sensor technology advancements.


Assuntos
Carbono , Ciprofloxacina , Corantes Fluorescentes , Pontos Quânticos , Pontos Quânticos/química , Ciprofloxacina/análise , Ciprofloxacina/química , Ciprofloxacina/sangue , Corantes Fluorescentes/química , Carbono/química , Espectrometria de Fluorescência , Limite de Detecção
18.
Luminescence ; 39(7): e4826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004784

RESUMO

Biocompatible and highly fluorescent phosphorus, nitrogen and sulfur carbon quantum dots (P,N,S-CQDs) were synthesized using a quick and ecologically friendly process inspired from plant sources. Garlic and red lentils were utilized as natural and inexpensive sources for efficient synthesis of the carbon-based quantum dots using green microwave-irradiation, which provides an ultrafast route for carbonization of the organic biomass and subsequent fabrication of P,N,S-CQDs within only 3 min. The formed P,N,S-CQDs showed excellent blue fluorescence at λem = 412 nm when excited at 325 nm with a quantum yield up to 26.4%. These fluorescent dots were used as a nano-sensor for the determination of the commonly used antibacterial and antiprotozoal drug, metronidazole (MTR). As MTR lacked native fluorescence and prior published techniques had several limitations, the proposed methodology became increasingly relevant. This approach affords sensitive detection with a wide linear range of 0.5-100.0 µM and LOD and LOQ values of 0.14 µM and 0.42 µM, respectively. As well as, it is cost-effective and ecologically benign. The MTT test was used to evaluate the in-vitro cytotoxicity of the fabricated P,N,S-CQDs. The findings supported a minimally cytotoxic impact and good biocompatibility, which provide a future perspective for the applicability of these CQDs in biomedical applications.


Assuntos
Carbono , Corantes Fluorescentes , Alho , Metronidazol , Micro-Ondas , Pontos Quânticos , Pontos Quânticos/química , Alho/química , Carbono/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Metronidazol/análise , Metronidazol/química , Metronidazol/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos
19.
Chem Biodivers ; 21(8): e202400891, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825847

RESUMO

The utilization of natural materials for the synthesis of highly fluorescent carbon quantum dots (CQDs) presents a sustainable approach to overcome the challenges associated with traditional chemical precursors. Here, we report the synthesis of novel S,N-self-doped CQDs (S,N@CQDs) derived from asparagus officinalis herb. These S,N@CQDs exhibit 16.7 % fluorescence quantum yield, demonstrating their potential in medical diagnostics. We demonstrate the efficacy of S,N@CQDs as luminescent probes for the detection of anti-pathogenic medications metronidazole (MTZ) and nitazoxanide (NTZ) over concentration ranges of 0.0-180.0 µM (with a limit of detection (LOD) of 0.064 µM) and 0.25-40.0 µM (LOD of 0.05 µM), respectively. The probes were successfully applied to determine MTZ and NTZ in medicinal samples, real samples, and spiked human plasma, with excellent recovery rates ranging from 99.82 % to 103.03 %. Additionally, S,N@CQDs demonstrate exceptional efficacy as diagnostic luminescent probes for hemoglobin (Hb) detection over a concentration range of 0-900 nM, with a minimal detectability of 9.24 nM, comparable to commercially available medical laboratory diagnostic tests. The eco-friendly synthesis and precise detection limits of S,N@CQDs meet necessary analytical requirements and hold promise for advancing diagnostic capabilities in clinical settings. This research signifies a significant step towards sustainable and efficient fluorescence-based medical diagnostics.


Assuntos
Asparagus , Carbono , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Humanos , Asparagus/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Metronidazol/análise , Metronidazol/sangue , Metronidazol/química , Hemoglobinas/análise , Limite de Detecção
20.
Mikrochim Acta ; 191(5): 233, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568427

RESUMO

Nitrogen, boron co-doped carbon quantum dots (gCQDs), and a coloration probe (PPD-NPs) with response to cobalt ions (Co2+) were prepared by using 4-hydroxyphenylboric acid as the common precursor, with ethylenediamine and p-phenylenediamine (PPD) adopted as nitrogen-doped reagents, respectively. A noticeable brown-to-purple color change can be observed with the addition of Co2+, and a broad absorption band emerges at 535 nm. At the same time, gCQDs, which is introduced as the fluorescence signal source, will be significantly quenched due to the enhanced inner filtration effect, induced by the overlap between the emission spectrum of gCQDs and the emerging absorption band. Therefore, a colorimetric/fluorescent dual-mode sensing probe for Co2+ is constructed by combining the recognition unit PPD-NPs and the fluorescent gCQDs into PPD-NP/gCQD. Under the optimized experimental conditions, the calculated limits of detection are 1.51 × 10-7 M and 3.75 × 10-7 M for the colorimetric mode and the fluorescence mode, respectively, well qualified for the determination of Co2+ maximum permitted level in drinking water. The feasibility of the proposed method has been verified in tap water, lake water, and black tea samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA