Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Exp Pharmacol Physiol ; 48(12): 1685-1692, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411314

RESUMO

Serotonin (5-HT) accumulates in the heart during myocardial ischaemia and induces deleterious effects on the cardiomyocytes. We aimed to investigate whether carrier-mediated 5-HT efflux contributed to the increase in interstitial 5-HT level during ischaemia. Using microdialysis technique applied to the heart of anaesthetised Wistar rats, myocardial interstitial concentration of 5-HT was measured by electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD) while simultaneously various pharmacological agents, which create a similar condition to ischaemia, were locally administered by reverse-microdialysis. Sodium cyanide-induced chemical anoxia increased dialysate 5-HT concentration. A similar increase in dialysate 5-HT concentration was induced by ouabain, an inhibitor of sodium-potassium ATPase and reserpine, an inhibitor of vesicular monoamine transporter. Fluoxetine, a selective serotonin reuptake inhibitor raised the baseline level of 5-HT, and neither sodium cyanide nor the combination of ouabain and reserpine induced further increase in 5-HT in the presence of fluoxetine. The results indicate that reverse transport of 5-HT via SERT, which is caused by an impaired ion gradient, contributes to the rise in interstitial level of 5-HT during ischaemia suggesting carrier-mediated 5-HT efflux occurs in the heart in vivo.


Assuntos
Serotonina
2.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R517-R525, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903042

RESUMO

Vagal nerve stimulation (VNS) has been explored as a potential therapy for chronic heart failure. The contribution of the afferent pathway to myocardial interstitial acetylcholine (ACh) release during VNS has yet to be clarified. In seven anesthetized Wistar-Kyoto rats, we implanted microdialysis probes in the left ventricular free wall and measured the myocardial interstitial ACh release during right VNS with the following combinations of stimulation frequency (F in Hz) and voltage readout (V in volts): F0V0 (no stimulation), F5V3, F20V3, F5V10, and F20V10. F5V3 did not affect the ACh level. F20V3, F5V10, and F20V10 increased the ACh level to 2.83 ± 0.47 (P < 0.01), 4.31 ± 1.09 (P < 0.001), and 4.33 ± 0.82 (P < 0.001) nM, respectively, compared with F0V0 (1.76 ± 0.22 nM). After right vagal afferent transection (rVAX), F20V3 and F20V10 increased the ACh level to 2.90 ± 0.53 (P < 0.001) and 3.48 ± 0.63 (P < 0.001) nM, respectively, compared with F0V0 (1.61 ± 0.19 nM), but F5V10 did not (2.11 ± 0.24 nM). The ratio of the ACh levels after rVAX relative to before was significantly <100% in F5V10 (59.4 ± 8.7%) but not in F20V3 (102.0 ± 8.7%). These results suggest that high-frequency and low-voltage stimulation (F20V3) evoked the ACh release mainly via direct activation of the vagal efferent pathway. By contrast, low-frequency and high-voltage stimulation (F5V10) evoked the ACh release in a manner dependent on the vagal afferent pathway.


Assuntos
Acetilcolina/metabolismo , Vias Aferentes/fisiologia , Miocárdio/metabolismo , Estimulação do Nervo Vago , Animais , Hemodinâmica , Masculino , Fibras Nervosas Mielinizadas/fisiologia
3.
Sci Rep ; 14(1): 16337, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014025

RESUMO

It has been suggested that sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardioprotective effects during myocardial ischemia/reperfusion (I/R) independent of glucose-lowering action. However, the effects of SGLT2 inhibitors on structural damage to cardiomyocytes in the ischemic region during I/R remain unknown. We applied a microdialysis technique to the heart of anesthetized rats and investigated the effects of an SGLT2 inhibitor, dapagliflozin, on myocardial interstitial myoglobin levels in the ischemic region during coronary occlusion followed by reperfusion. Dapagliflozin was administered systemically (40 µg/body iv) or locally via a dialysis probe (100 µM and 1 mM) 30 min before coronary occlusion. In the vehicle group, coronary occlusion increased the dialysate myoglobin concentration in the ischemic region. Reperfusion further increased the dialysate myoglobin concentration. Intravenous administration of dapagliflozin reduced dialysate myoglobin concentration during ischemia and at 0-15 min after reperfusion, but local administration (100 µM and 1 mM) did not. Therefore, acute systemic administration of dapagliflozin prior to ischemia has cardioprotective effects on structural damage during I/R.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Mioglobina , Animais , Compostos Benzidrílicos/farmacologia , Mioglobina/metabolismo , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Microdiálise
4.
J Physiol Sci ; 72(1): 27, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289481

RESUMO

To investigate the roles of the serotonin (5-HT) transporter (SERT) and plasma membrane monoamine transporter (PMAT) in 5-HT uptake and its metabolism in the heart, we monitored myocardial interstitial levels of 5-HT and 5-HIAA, a metabolite of 5-HT by monoamine oxidase (MAO), in anesthetized rats using a microdialysis technique. Fluoxetine (SERT inhibitor), decynium-22 (PMAT inhibitor), or their mixture was locally administered by reverse-microdialysis for 60 min. Subsequently, pargyline (MAO inhibitor) was co-administered. Fluoxetine rapidly increased dialysate 5-HT concentration, while decynium-22 gradually increased it. The mixture induced a larger increase in dialysate 5-HT concentration compared to fluoxetine or decynium-22 alone. Fluoxetine increased dialysate 5-HIAA concentration, and this increase was abolished by pargyline. Decynium-22 and the mixture did not change dialysate 5-HIAA concentration, which were not affected by pargyline. Both SERT and PMAT regulate myocardial interstitial 5-HT levels by its uptake; however, 5-HT uptake via PMAT leads to 5-HT metabolism by MAO.


Assuntos
Inibidores da Monoaminoxidase , Serotonina , Animais , Ratos , Soluções para Diálise , Fluoxetina/farmacologia , Ácido Hidroxi-Indolacético/metabolismo , Proteínas de Membrana Transportadoras , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Pargilina/farmacologia , Serotonina/metabolismo , Coração
5.
Auton Neurosci ; 216: 39-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30220605

RESUMO

To elucidate the abnormality of cardiac vagal control in streptozotocin-induced type 1 diabetic rats, we measured left ventricular myocardial interstitial acetylcholine (ACh) release in response to α2-adrenergic stimulation as an index of in vivo cardiac vagal nerve activity. A cardiac microdialysis technique was applied to the rat left ventricle, and the effect of α2-adrenergic stimulation by intravenous medetomidine (100 µg/kg) on myocardial interstitial ACh levels was examined in anesthetized diabetic rats (4-6 weeks after intraperitoneal streptozotocin) and age-matched control rats (protocol 1). The effect of electrical vagal nerve stimulation on ACh levels was also examined in separate rats (protocol 2). In protocol 1, medetomidine increased the ACh levels in control (from 1.76 ±â€¯0.65 to 3.13 ±â€¯1.41 nM, P < 0.05, n = 7) but not in diabetic rats (from 2.01 ±â€¯0.47 to 1.62 ±â€¯0.34 nM, not significant, n = 7). In protocol 2, electrical vagal nerve stimulation at 20 Hz significantly increased the ACh levels in both control (from 1.49 ±â€¯0.26 to 6.39 ±â€¯1.81 nM, P < 0.001, n = 6) and diabetic rats (from 1.77 ±â€¯0.54 to 6.98 ±â€¯1.38 nM, P < 0.001, n = 6). In conclusion, medetomidine-induced central vagal activation was impaired in diabetic rats, whereas peripheral cardiac vagal control of ACh release was preserved. The impairment of central vagal activation may lead to relative sympathetic predominance and promote cardiovascular complications in diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Medetomidina/farmacologia , Nervo Vago/fisiopatologia , Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Estimulação Elétrica , Ventrículos do Coração/metabolismo , Ratos , Estreptozocina
6.
Physiol Rep ; 7(22): e14297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782271

RESUMO

Serotonin (5-HT) accumulates in the heart during myocardial ischemia and induces deleterious effects on the cardiomyocytes through receptor-dependent and monoamine oxidase-dependent pathways. We aimed to clarify the involvement of extra-neuronal monoamine transporters in the clearance of 5-HT during ischemia and reperfusion in the heart. Using a microdialysis technique in the anesthetized Wistar rat heart, we monitored myocardial interstitial 5-HT and 5-hydroxyindole acetic acid (5-HIAA) concentration by means of electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD). Effects of inhibitors of the plasma membrane monoamine transporter (PMAT) and the organic cation transporter 3 (OCT3) (decynium-22 and corticosterone) on the 5-HT and 5-HIAA concentrations during baseline, coronary occlusion, and reperfusion were investigated. Basal dialysate 5-HT concentration were increased by local administration of decynium-22, but not by corticosterone. Addition of fluoxetine, a serotonin transporter (SERT) inhibitor further increased the 5-HT concentration upon during administration of decynium-22. Decynium-22 elevated the background level of 5-HT during coronary occlusion and maintained 5-HT concentration at a high level during reperfusion. Production of 5-HIAA in the early reperfusion was significantly suppressed by decynium-22. These results indicate that PMAT and SERT independently regulate basal level of interstitial 5-HT, and PMAT plays a more important role in the clearance of 5-HT during reperfusion. These data suggest the involvement of PMAT in the monoamine oxidase-dependent deleterious pathway in the heart.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Serotonina/metabolismo , Animais , Proteínas de Transporte de Nucleosídeo Equilibrativas/antagonistas & inibidores , Ácido Hidroxi-Indolacético/antagonistas & inibidores , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Microdiálise/métodos , Traumatismo por Reperfusão Miocárdica/patologia , Quinolinas/farmacologia , Ratos , Ratos Wistar
7.
Auton Neurosci ; 205: 21-25, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28242182

RESUMO

Desipramine (DMI) is a blocker of neuronal norepinephrine (NE) uptake transporter. Although intravenous DMI has been shown to cause centrally-mediated sympathoinhibition and peripheral NE accumulation, its parasympathetic effect remains to be elucidated. We hypothesized that intravenous DMI activates the cardiac vagal nerve via an α2-adrenergic mechanism. Using a cardiac microdialysis technique, changes in myocardial interstitial acetylcholine (ACh) levels in the left ventricular free wall in response to intravenous DMI (1mg·kg-1) were examined in anesthetized rats. In rats with intact vagi (n=7), intravenous DMI increased ACh from 1.67±0.43 to 2.48±0.66nM (P<0.01). In rats with vagotomy (n=5), DMI did not significantly change ACh (from 0.92±0.16 to 0.85±0.23nM). In rats with intact vagi pretreated with intravenous yohimbine (2mg·kg-1), DMI did not significantly change ACh (from 1.25±0.23 to 1.13±0.15nM). In conclusion, while DMI is generally considered to be an agent that predominantly affects sympathetic neurotransmission, it can activate the cardiac vagal nerve via α2-adrenergic stimulation in experimental settings in vivo.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Desipramina/farmacologia , Parassimpatomiméticos/farmacologia , Acetilcolina/metabolismo , Administração Intravenosa , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Ratos Endogâmicos WKY , Receptores Adrenérgicos alfa/metabolismo , Vagotomia , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Ioimbina/farmacologia
8.
Auton Neurosci ; 205: 33-40, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28344023

RESUMO

The aim of this study was to evaluate cardiac vagal nerve activity and identify the abnormality of cardiac vagal control in heart failure caused by dilated cardiomyopathy (DCM) using a knock-in mouse model with a ΔK210 mutation in the cardiac troponin T gene. The effects of electrical stimulation of the cervical vagal nerve at 5 and 10Hz (peripheral vagal control) and α2-adrennoceptor stimulation by intravenous medetomidine at 0.1mg/kg (central vagal control) were examined in wild-type (WT) mice and DCM mice. Microdialysis technique was applied to the left ventricular myocardium of anesthetized mice and myocardial interstitial acetylcholine (ACh) levels were measured by HPLC as an index of ACh release from cardiac vagal nerve endings. Electrical vagal nerve stimulation increased cardiac interval and myocardial interstitial ACh level in both WT and DCM mice, and these responses did not differ between WT and DCM mice. In contrast, intravenous medetomidine increased cardiac interval and myocardial interstitial ACh level in both WT and DCM mice, but the responses of cardiac interval and myocardial interstitial ACh level were significantly suppressed in DCM mice compared to WT mice. Medetomidine did not affect the myocardial interstitial ACh response induced by vagal nerve stimulation in WT mice. In this mouse model of DCM, peripheral vagal control including ACh release from vagal nerve endings and the postsynaptic response of pacemaker cells was preserved, but central vagal control through α2-adrenoceptors was impaired.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Nervo Vago/fisiopatologia , Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ventrículos do Coração/inervação , Ventrículos do Coração/metabolismo , Masculino , Medetomidina/farmacologia , Camundongos Transgênicos , Microdiálise , Receptores Adrenérgicos alfa 2/metabolismo , Deleção de Sequência , Troponina T/genética , Troponina T/metabolismo , Vagotomia , Nervo Vago/efeitos dos fármacos , Estimulação do Nervo Vago
9.
Acta Physiol (Oxf) ; 210(4): 823-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256333

RESUMO

AIM: Calpain activation has a putative role in ischaemia-reperfusion injury of cardiomyocytes. This study clarified the in vivo contribution of calpain to disruption of cardiomyocyte sarcolemma during ischaemia and after reperfusion in anaesthetized rats. METHODS: Using a microdialysis technique in the hearts of anaesthetized rats, we investigated the effects of the calpain inhibitors on myocardial interstitial myoglobin level in the ischaemic region during coronary occlusion and after reperfusion. The calpain inhibitors were administered locally via a dialysis probe. Two durations of coronary occlusion were tested. RESULTS: Thirty-minute coronary occlusion: dialysate myoglobin concentration increased markedly from 385 ± 46 ng mL(-1) at baseline to 3701 ± 527 ng mL(-1) at 20-30 min of occlusion. After reperfusion, dialysate myoglobin concentration further increased, reaching a peak (12 296 ± 1564 ng mL(-1) ) at 10-20 min post-reperfusion and then declined gradually. The calpain inhibitors, MDL-28170 and SNJ-1945 did not change dialysate myoglobin concentration during occlusion but attenuated the increase after reperfusion to 6826 ± 1227 and 8130 ± 938 ng mL(-1) at 10-20 min post-reperfusion (P < 0.05), respectively. Ninety-minute coronary occlusion: dialysate myoglobin concentration increased from 516 ± 33 ng mL(-1) at baseline to 5463 ± 387 ng mL(-1) at 80-90 min after occlusion. After reperfusion, there was no significant increase in dialysate myoglobin concentration. MDL-28170 did not affect dialysate myoglobin concentration during occlusion or after reperfusion. CONCLUSION: Calpain contributes to sarcolemmal disruption immediately after reperfusion following 30-min coronary occlusion, but has little effects during ischaemia and after reperfusion in 90-min coronary occlusion.


Assuntos
Calpaína/metabolismo , Miócitos Cardíacos/metabolismo , Mioglobina/metabolismo , Traumatismo por Reperfusão , Anestesia , Animais , Dipeptídeos/farmacologia , Masculino , Ratos , Ratos Wistar
10.
Acta Physiol (Oxf) ; 209(1): 55-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23710753

RESUMO

AIM: To examine whether sympathetic afferent stimulation (SAS) inhibits central vagal activation induced by α2 -adrenergic stimulation. METHODS: In anaesthetized Wistar-Kyoto rats, a cardiac microdialysis technique was applied to the left ventricle, and the effect of α2 -adrenergic stimulation by medetomidine on myocardial interstitial acetylcholine (ACh) levels was examined in the absence (n = 6) or the presence (n = 6) of SAS delivered from the left stellate ganglion. The effect of electrical vagal efferent stimulation on myocardial interstitial ACh release was also examined in the absence or the presence of SAS (n = 6). RESULTS: Intravenous medetomidine (0.1 mg kg(-1) ) significantly increased myocardial interstitial ACh levels in the absence of SAS (from 1.95 ± 0.79 to 3.36 ± 1.61 nM, P < 0.05), but not in the presence of SAS (from 1.67 ± 0.67 to 2.01 ± 0.78 nM). In contrast, electrical vagal nerve stimulation increased myocardial interstitial ACh level to the same degree regardless of SAS (from 1.66 ± 0.16 to 3.93 ± 0.72 nM without SAS vs. 4.05 ± 0.89 nM with SAS). CONCLUSION: Sympathetic afferent stimulation inhibited medetomidine-induced ACh release, but not electrical stimulation-induced ACh release, suggesting that SAS inhibited medetomidine-induced vagal activation via central mechanisms. While central vagal activation by α2 -adrenergic agonists could be an alternative to electrical vagal activation, blocking sympathetic afferent input may be important to increase the efficacy of α2 -adrenergic agonists in enhancing vagal nerve activity.


Assuntos
Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Medetomidina/farmacologia , Nervo Vago/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Medetomidina/administração & dosagem , Ratos Endogâmicos WKY , Estimulação do Nervo Vago/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA