Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(3): 479-496.e23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736300

RESUMO

Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.


Assuntos
Coração , Mesoderma , Camundongos , Animais , Diferenciação Celular , Morfogênese , Embrião de Mamíferos , Mamíferos
2.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984541

RESUMO

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Assuntos
Matriz Extracelular , Coração , Inibidor Tecidual de Metaloproteinase-2 , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Matriz Extracelular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morfogênese , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia
3.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680191

RESUMO

During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Via de Sinalização Wnt/genética , Diferenciação Celular/genética , Microscopia , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética
4.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36620995

RESUMO

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Assuntos
Endocárdio , Redes Reguladoras de Genes , Animais , Camundongos , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Fatores de Transcrição/metabolismo
5.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382296

RESUMO

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Assuntos
Células Endoteliais , Eritropoetina , Animais , Camundongos , Hiperplasia , Hibridização in Situ Fluorescente , Miócitos Cardíacos , RNA , RNA Mensageiro/genética
6.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39221623

RESUMO

Development of the heart is a very intricate and multiplex process as it involves not only the three spatial dimensions but also the fourth or time dimension. Over time, the heart of an embryo needs to adapt its function to serve the increasing complexity of differentiation and growth towards adulthood. It becomes even more perplexing by expanding time into millions of years, allocating related species in the tree of life. As the evolution of soft tissues can hardly be studied, we have to rely on comparative embryology, supported heavily by genetic and molecular approaches. These techniques provide insight into relationships, not only between species, but also between cell populations, signaling mechanisms, molecular interactions and physical factors such as hemodynamics. Heart development depends on differentiation of a mesodermal cell population that - in more derived taxa - continues in segmentation of the first and second heart field. These fields deliver not only the cardiomyocytes, forming the three-dimensionally looping cardiac tube as a basis for the chambered heart, but also the enveloping epicardium. The synchronized beating of the heart is then organized by the conduction system. In this Review, the epicardium is introduced as an important player in cardiac differentiation, including the conduction system.


Assuntos
Evolução Biológica , Sistema de Condução Cardíaco , Hemodinâmica , Pericárdio , Vertebrados , Animais , Pericárdio/fisiologia , Pericárdio/embriologia , Vertebrados/fisiologia , Sistema de Condução Cardíaco/fisiologia , Coração/fisiologia , Coração/embriologia
7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000221

RESUMO

The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.


Assuntos
Cardiopatias Congênitas , Coração , Humanos , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/etiologia , Animais , Coração/embriologia , Coração/crescimento & desenvolvimento , Crista Neural , Morfogênese , Organogênese
8.
Genesis ; 61(1-2): e23506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546531

RESUMO

In Drosophila larvae, the direction of blood flow within the heart tube, as well as the diastolic filling of the posterior heart chamber, is regulated by a single cardiac valve. This valve is sufficient to close the heart tube at the junction of the ventricle and the aorta and is formed by only two cells; both are integral parts of the heart tube. The valve cells regulate hemolymph flow by oscillating between a spherical and a flattened cell shape during heartbeats. At the spherical stage, the opposing valve cells close the heart lumen. The dynamic cell shape changes of valve cells are supported by a dense, criss-cross orientation of myofibrils and the presence of the valvosomal compartment, a large intracellular cavity. Both structures are essential for the valve cells' function. In a screen for factors specifically expressed in cardiac valve cells, we identified the transcription factor Tailup. Knockdown of tailup causes abnormal orientation and differentiation of cardiac muscle fibers in the larval aorta and inhibits the formation of the ventral longitudinal muscle layer located underneath the heart tube in the adult fly and affects myofibrillar orientation of valve cells. Furthermore, we have identified regulatory sequences of tup that control the expression of tailup in the larval and adult valve cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Coração , Valvas Cardíacas/metabolismo , Larva/genética , Larva/metabolismo , Miócitos Cardíacos/metabolismo
9.
Mol Reprod Dev ; 90(1): 14-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534913

RESUMO

The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.


Assuntos
Histona Desacetilases , Histonas , Histonas/metabolismo , Histona Desacetilases/metabolismo , Cromatina , Desenvolvimento Embrionário , Inibidores de Histona Desacetilases/farmacologia , Acetilação
10.
BMC Cancer ; 23(1): 1245, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110859

RESUMO

BACKGROUND: Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS: Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS: The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION: The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.


Assuntos
Neoplasias Cardíacas , Mixoma , Humanos , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/fisiologia , Diferenciação Celular/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patologia , Mixoma/genética , Mixoma/metabolismo , Mixoma/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Microambiente Tumoral
11.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306013

RESUMO

Drosophila, like all insects, has an open circulatory system for the distribution of haemolymph and its components. The circulation of the haemolymph is essentially driven by the pumping activity of the linear heart. The heart is constructed as a tube into which the haemolymph is sucked and pumped forward by rhythmic contractions running from the posterior to the anterior, where it leaves the heart tube. The heart harbours cardiac valves to regulate flow directionality, with a single heart valve differentiating during larval development to separate the heart tube into two chambers. During metamorphosis, the heart is partially restructured, with the linear heart tube with one terminal wide-lumen heart chamber being converted into a linear four-chambered heart tube with three valves. As in all metazoan circulatory systems, the cardiac valves play an essential role in regulating the direction of blood flow. We provide evidence that the valves in adult flies arise via transdifferentiation, converting lumen-forming contractile cardiomyocytes into differently structured valve cells. Interestingly, adult cardiac valves exhibit a similar morphology to their larval counterparts, but act differently upon heart beating. Applying calcium imaging in living specimens to analyse activity in valve cells, we show that adult cardiac valves operate owing to muscle contraction. However, valve cell shape dynamics are altered compared with larval valves, which led us to propose our current model of the opening and closing mechanisms in the fly heart.


Assuntos
Drosophila , Coração , Animais , Coração/anatomia & histologia , Valvas Cardíacas/fisiologia , Miócitos Cardíacos/fisiologia , Diferenciação Celular , Hemodinâmica
12.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003449

RESUMO

Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.


Assuntos
Diabetes Gestacional , Cardiopatias Congênitas , Hiperglicemia , Gravidez em Diabéticas , Gravidez , Feminino , Humanos , Diabetes Gestacional/genética , Fatores de Risco , Cardiopatias Congênitas/genética , Gravidez em Diabéticas/genética , Hiperglicemia/complicações , Hiperglicemia/genética
13.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047216

RESUMO

Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Organoides , Medicina Regenerativa/métodos , Fibroblastos
14.
Semin Cell Dev Biol ; 100: 29-51, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862220

RESUMO

The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Células-Tronco Pluripotentes/metabolismo , Regeneração , Animais , Humanos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual
15.
Am J Physiol Heart Circ Physiol ; 322(1): H8-H24, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767486

RESUMO

Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the present work, gene expression analyses of Ptprz1-/- and Ptprz1+/+ mice endothelial cells and hearts pointed to an unidentified role of PTPRZ1 in heart development through the regulation of heart-specific transcription factor genes. Echocardiography analysis in mice identified that both systolic and diastolic functions are affected in Ptprz1-/- compared with Ptprz1+/+ hearts, based on a dilated left ventricular (LV) cavity, decreased ejection fraction and fraction shortening, and increased angiogenesis in Ptprz1-/- hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1-/- knockout was also generated and exhibited misregulated expression of developmental cardiac markers, bradycardia, and defective heart morphogenesis characterized by enlarged ventricles and defected contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected zebrafish heart development and function in a way like what is observed in the ptprz1-/- zebrafish. The same inhibitor had no effect in the function of the adult zebrafish heart, suggesting that PTPRZ1 is not important for the adult heart function, in line with data from the human cell atlas showing very low to negligible PTPRZ1 expression in the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and endothelial cells. Collectively, these data suggest that PTPRZ1 regulates cardiac morphogenesis in a way that subsequently affects heart function and warrant further studies for the involvement of PTPRZ1 in idiopathic congenital cardiac pathologies.NEW & NOTEWORTHY Protein tyrosine phosphatase receptor ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems to affect heart development. In both mouse and zebrafish animal models, loss of PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction, and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems to be involved in atrioventricular canal specification, outflow tract morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a role in heart development and support the hypothesis that it may be involved in congenital cardiac pathologies.


Assuntos
Coração/embriologia , Miocárdio/metabolismo , Organogênese , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas de Peixe-Zebra/genética , Animais , Deleção de Genes , Camundongos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
16.
J Biomed Sci ; 29(1): 38, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681202

RESUMO

The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator de Resposta Sérica , Coração , Mesoderma/metabolismo , Miocárdio/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/genética
17.
Fish Physiol Biochem ; 48(1): 173-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039994

RESUMO

As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 h post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss of function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.


Assuntos
Coração/crescimento & desenvolvimento , Proteínas do Tecido Nervoso , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
18.
Development ; 145(7)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29490984

RESUMO

In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis.


Assuntos
Coração/embriologia , Organogênese/fisiologia , Trato Gastrointestinal Superior/embriologia , Actomiosina/fisiologia , Animais , Embrião de Galinha , Endoderma/citologia , Imunofluorescência , Mesoderma/citologia , Imagem com Lapso de Tempo
19.
Development ; 145(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573475

RESUMO

Embryonic and postnatal life depend on the uninterrupted function of cardiac muscle cells. These cells, termed cardiomyocytes, display many fascinating behaviors, including complex morphogenic movements, interactions with other cell types of the heart, persistent contractility and quiescence after birth. Each of these behaviors depends on complex interactions between both cardiac-restricted and widely expressed transcription factors, as well as on epigenetic modifications. Here, we review recent advances in our understanding of the genetic and epigenetic control of cardiomyocyte differentiation and proliferation during heart development, regeneration and disease. We focus on those regulators that are required for both heart development and disease, and highlight the regenerative principles that might be manipulated to restore function to the injured adult heart.


Assuntos
Epigênese Genética , Cardiopatias/genética , Coração/embriologia , Miócitos Cardíacos/metabolismo , Regeneração/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos
20.
Circ Res ; 125(4): 398-410, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31221018

RESUMO

RATIONALE: We hypothesized that the differentiation processes of cardiac progenitor cell (CP) from first and second heart fields (FHF and SHF) may undergo the unique instructive gene regulatory networks or signaling pathways, and the precise SHF progression is contingent on the FHF signaling developmental cues. OBJECTIVE: We investigated how the intraorgan communications control sequential building of discrete anatomic regions of the heart at single-cell resolution. METHODS AND RESULTS: By single-cell transcriptomic analysis of Nkx2-5 (NK2 homeobox 5) and Isl1 (ISL LIM homeobox 1) lineages at embryonic day 7.75, embryonic day 8.25, embryonic day 8.75, and embryonic day 9.25, we present a panoramic view of distinct CP differentiation hierarchies. Computational identifications of FHF- and SHF-CP descendants revealed that SHF differentiation toward cardiomyocytes underwent numerous step-like transitions, whereas earlier FHF progressed toward cardiomyocytes in a wave-like manner. Importantly, single-cell pairing analysis demonstrated that SHF-CPs were attracted to and expanded FHF-populated heart tube region through interlineage communications mediated by the chemotactic guidance (MIF [macrophage migration inhibitory factor]-CXCR2 [C-X-C motif chemokine receptor 2]). This finding was verified by pharmacological blockade of this chemotaxis in embryos manifesting limited SHF cell migration and contribution to the growth of the outflow tract and right ventricle but undetectable effects on the left ventricle or heart tube initiation. Genetic loss-of-function assay of Cxcr2 showed that the expression domain of CXCR4 was expanded predominantly at SHF. Furthermore, double knockout of Cxcr2/Cxcr4 exhibited defective SHF development, corroborating the redundant function. Mechanistically, NKX2-5 directly bound the Cxcr2 and Cxcr4 genomic loci and activated their transcription in SHF. CONCLUSIONS: Collectively, we propose a model in which the chemotaxis-mediated intraorgan crosstalk spatiotemporally guides the successive process of positioning SHF-CP and promoting primary heart expansion and patterning upon FHF-derived heart tube initiation.


Assuntos
Quimiotaxia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteína Homeobox Nkx-2.5/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/citologia , Proteína Homeobox Nkx-2.5/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA